用户名: 密码: 验证码:
Nb、Cr含量对铸态取向硅钢高温组织演变及抑制剂析出行为的影响
详细信息    查看官网全文
摘要
研究了Nb、Cr对再加热取向硅钢铸坯中抑制剂的析出行为及组织的影响。结果表明:在相同的热处理工艺条件下,钢中的Nb通过影响抑制剂的析出行为,导致钢的微观组织形貌及其均匀程度存在差异。高Nb低Cr试样中第二相粒子在1 350℃下固溶最好,钢样冷却过程中的异相组织演变分三段进行,每段持续时间都非常短。高Nb试样的异相组织分布更为均匀,主要呈带状和网状分布在钢基体中,其中富集了Nb-A1-S及渗碳体。Cr含量对异相组织的分布和组成影响不大。均热急冷后的高Nb试样中析出物以固溶温度较低的NbN和NbC为主,且析出物面积密度较大,为(1.06~1.31)×10~4个/mm~2,平均粒径较小,为(0.10~0.11)μm。Cr含量对析出物的影响仅体现在其组成上,且影响程度较小。取向硅钢中加入适量的Nb以形成更多细小的NbN、NbC抑制剂,有利于降低铸坯再加热处理温度,获得更均匀的铸态组织。
The influence of niobium and chromium on the behaviors of inhibitors and microstructure of the reheated as-cast grain-oriented silicon steel was studied.The results show that the precipitation behaviors of the inhibitors are influenced by Nb added into the specimens,which leads to the difference of the microstructure morphology and homogeneity degree of the as-cast grain-oriented silicon steels under the same heat-treating conditions.The inhibitors dissolve well at 1 350 ℃ and the precipitation of heterogeneous microstructures in specimen bearing more niobium and less chromium is divided into three stages during the cooling process.Every stage lasts only a very short time.The microstructures of the specimens bearing more niobium are more homogeneous and mainly banding-like or net-like,which are aggregated with Nb-Al-S and Fe_3C.Chromium content has little influence on the distribution and composition of heterogeneous microstructures.The precipitates in high niobium specimens are mainly NbN and NbC which dissolve at low temperature when the as-cast slabs are quickly quenching after soaking.The area density of the precipitates is larger,which is(1.06-1.31) ×10~4/mm~2.And the average particle size is smaller,which is(0.10-0.11) |ita The influence of chromium content on precipitates only reflects in the composition.The influence degree is very small More and fine NbN,NbC inhibitors form after adding moderate Nb into grain-oriented silicon steel,which can reduce the soaking temperature of the steels during reheating process and obtain more homogenous as-cast microstructure.
引文
1何忠治,赵宇,罗海文.电工钢[M].北京:冶金工业出版社,2012.
    2 Park J S,Lee Y K.Nb(C,N)precipitation kinetics in the bainite region of a low-carbon Nb-microalloyed steel[J].Scr Mater,2007,57:109.
    3増井浩昭,藤井宣憲,藤井浩康,等.高磁束密度方向性電磁鋼板の製造法:日本公开特许公报,特开平08-199239[P].1996-08-06.
    4 Zhang Ying,Fu Yunli,Wang Ruwu,et al.Feasibility of Nb(CN)as inhibitors in oriented silicon steel[J].China Metall,2008,18(7):16(in Chinese).张颖,傅耘力,汪汝武,等.Nb(C,N)作为取向硅钢中抑制剂的可行性[J].中国冶金,2008,18(7):16.
    5 Klaus Hulka,Constantin Vlad,Ana Doniga.The role of niobium as microalloying element in electrical sheet[J].Steel Res,2002,73(10):453.
    6李青山,韩赞熙,禹宗秀,等.基于低温板坯加热法生产高磁感应强度的晶粒择优取向电工钢板的方法:中国,CN1231001A[P].1999-10-06.
    7高橋延幸,菅洋三,黒木克郎.磁束密度の高ぃ一方向性珪素鋼板の製造方法:日本公开特许公报,特开乎01-230721[P].1989-09-14.
    8高橋延幸,黒木克郎,新井聡,等.磁柬密度の高ぃ一方向性電磁鋼板の製造方法:日本公开特许公报,特开平01-283324[P].1989-11-14.
    9高橋延幸,菅洋三,黒木克郎.磁柬密度の高ぃ一方向性珪素鋼板の製造方法:日本公开特许公报,特开平01-301820[P3.1989-12-06.
    10 Choi G S.Method for manufacturing oriented electrical steel by heating slab at low temperature:US,5653821[P].1997-08-05.
    11 Kim J K,Lee S J,Yoon Y J.Process for manufacturing high magnetic flux density grain oriented electrical steel sheet having superior magnetic properties:USA,5453136[P].1995-09-26.
    12 Takahashi N,Suga Y,Kobayashi H.Recent developments in grainoriented silicon steel[J].J Magn Magn Mater,1996,160:98.
    13 Iwayama K,Haratani T.The dissolution and precipitation behavior of A1N and MnS in grain-oriented 3%silicon-steel with high permeability[J].J Magn Magn Mater,1980,19(1-3):15.
    14 Matsuda S,Okumura N.Effect of distribution of TiN precipitate particle on the austenite grain size of low carbon low alloy steels[J].Trans ISIJ,1978,18:198.
    15陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700