用户名: 密码: 验证码:
Fractional Order Fixed-time Nonsingular Terminal Sliding Mode Control for Chaotic Oscillation in Power System
详细信息    查看官网全文
摘要
Chaotic oscillation is a harmful phenomenon for power system and it threatens the safe and stable operation of power system. This paper presents fractional order fixed-time nonsingular terminal sliding mode control to suppress chaos in power system. A novel fractional order terminal sliding mode surface is first proposed to guarantee the fixed-time convergence of system states along the sliding surface, and then a nonsingular terminal sliding mode controller is designed to force the system states to reach the sliding surface within fixed-time and stay on it forever. Furthermore, the fixed-time stability and the robustness of the proposed control scheme are proved using the fractional Lyapunov stability theory. Finally, the proposed control scheme is applied to suppress chaos in fractional order power system and simulation results demonstrate the effectiveness of the proposed control scheme.
Chaotic oscillation is a harmful phenomenon for power system and it threatens the safe and stable operation of power system. This paper presents fractional order fixed-time nonsingular terminal sliding mode control to suppress chaos in power system. A novel fractional order terminal sliding mode surface is first proposed to guarantee the fixed-time convergence of system states along the sliding surface, and then a nonsingular terminal sliding mode controller is designed to force the system states to reach the sliding surface within fixed-time and stay on it forever. Furthermore, the fixed-time stability and the robustness of the proposed control scheme are proved using the fractional Lyapunov stability theory. Finally, the proposed control scheme is applied to suppress chaos in fractional order power system and simulation results demonstrate the effectiveness of the proposed control scheme.
引文
[1]D.Q.Wei and X.S.Luo,Noise-induced chaos in singlemachine infinite-bus power systems,EPL,86(5):50008,2009.
    [2]H.D.Chiang,C.W.Liu,P.P.Varaiya,F.F.Wu and M.G.Lauby,Chaos in a simple power system,IEEE Trans.Power Syst.,8(4):1407-1417,1993
    [3]M.L.Ma and F.H.Min,Bifurcation behavior and coexisting motions in a time-delayed power system,Chin.Phys.B,24(3):030501,2015.
    [4]W.Ji and V.Venkatasubramanian,Hard-limit induced chaos in a fundamental power system model,Int.J.Electr.Power Energy Syst.,18(5):279-295,1996.
    [5]Y.X.Yu,H.J.Jia,P.Li and J.F.Su,Power system instability and chaos.Electr.Power Syst.Res.,65(3):187-195,2003
    [6]D.Q.Wei and X.S.Luo,Passivity-based adaptive control of chaotic oscillations in power system,Chaos Solitons Fractals,31(3):665-671,2007.
    [7]I.M.Ginarsa,A.Soeprijanto and M.H.Purnomo,Controlling chaos and voltage collapse using an ANFIS-based composite controller-static var compensator in power systems.Int.J.Electr.Power Energy Syst.,46:79-88,2013.
    [8]Q.Y.Sun,Y.G.Wang,J.Yang,Y.Qiu and H.G.Zhang,Chaotic dynamics in smart grid and suppression scheme via generalized fuzzy hyperbolic model,Math.Problems Eng.,2014,Article ID 761271,2014
    [9]J.K.Ni,C.X.Liu and X.Pang,Fuzzy fast terminal sliding mode controller using an equivalent control for chaotic oscillation in power system,Acta Phys.Sin.,62(19):190507,2013(in Chinese)
    [10]J.K.Ni,C.X.Liu,K.Liu and X.Pang,Variable speed synergetic control for chaotic oscillation in power system,Nonlinear Dyn.,78(1):681-690,2014
    [11]J.K.Ni,L.Liu,C.X.Liu,X.Y.Hu and A.A.Li,Chaos suppression for a four-dimensional fundamental power system model using adaptive feedback control,Trans.Inst.Meas.Control,39(2):194-207,2017
    [12]J.K.Ni,L.Liu,C.X.Liu and X.Y.Hu,Chattering-Free time scale separation sliding mode control design with application to power system chaos suppression,Math.Problems Eng.,2016,Article ID 5943934,2016
    [13]J.K.Ni,L.Liu,C.X.Liu,X.Y.Hu and S.L.Li,Fast fixedtime nonsingular terminal sliding mode control and its application to chaos suppression in power system,IEEE Trans.Circuits Syst.II,Exp.Briefs,64(2):151-155,2017
    [14]J.K.Ni,L.Liu,C.X.Liu,X.Y.Hu and T.S.Shen,Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system,Nonlinear Dyn.,86(1):401-420,2016
    [15]I.Schafer and K.Kruger,Modelling of lossy coils using fractional derivatives,J.Phys.D,Appl.Phys.,41(4):1-8,2008
    [16]S.Westerlund and L.Ekstam,Capacitor theory,IEEE Trans.Dielectr.Elect.Insul.,1(5):826-839,1994.
    [17]C.J.Wu,G.Q.Si and Y.B.Zhang,The fractional-order statespace averaging modeling of the Buck Boost DC/DC converter in discontinuous conduction mode and the performance analysis,Nonlinear Dyn.,79(1):689-703,2015.
    [18]W.Zheng,Y.Luo,Y.Q.Chen and Y.G.Pi,Fractional-order modeling of permanent magnet synchronous motor speed servo system,J.Vib.Control,22(9):2255-2280,2016.
    [19]H.S.Li,Y.Luo and Y.Q.Chen,A fractional order proportional and derivative(FOPD)motion controller:tuning rule and experiments,IEEE Trans.Control Syst.Technol.,18(2):516-520,2010.
    [20]T.C.Lin and C.H.Kuo,H-inf synchronization of uncertain fractional order chaotic systems:Adaptive fuzzy approach,ISA Trans,50(4):548-556,2011.
    [21]B.Wang,J.Y.Xue,F.J.Wu and D.L.Zhu,Stabilization conditions for fuzzy control of uncertain fractional order nonlinear systems with random disturbances,IET Contr.Theory Appl.,10(6):637-647,2016.
    [22]X.J.Tang,Z.B.Liu and X.Wang,Integral fractional pseudospectral methods for solving fractional optimal control problems,Automatica,62:304-311,2015.
    [23]M.P.Aghababa,Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic(hyperchaotic)systems using fractional nonsingular terminal sliding mode technique.Nonlinear Dyn,69(1):247-261,2012
    [24]H.T.Song and T.Zhang,Fast robust integrated guidance and control design of interceptors,IEEE Trans.Control Syst.Technol.,24(1):349-356,2016
    [25]B.Wang,J.L.Ding,F.J.Wu and D.L.Zhu,Robust finitetime control of fractional-order nonlinear systems via frequency distributed model,Nonlinear Dyn,85(4):2133-2142,2016
    [26]A.Polyakov,Nonlinear feedback design for fixed-time stabilization of linear control systems,IEEE Trans.Autom.Contr.,57(8):2106-2110,2012.
    [27]M.Defoort,A.Polyakov,G.Demesure,M.Djemai and K.Veluvolu,Leader-follower fixed-time consensus for multiagent systems with unknown non-linear inherent dynamics,IET Contr.Theory Appl.,9(14):2165-2170,2015
    [28]Z.Y.Zuo,Nonsingular fixed-time consensus tracking for second-order multi-agent networks,Automatica,54:305-309,2015
    [29]J.J.Fu and J.Z.Wang,Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties,Syst.and Contr.Lett.,93:1-12,2016
    [30]Z.Y.Zuo and L.Tie,Distributed robust finite-time nonlinear consensus protocols for multi-agent systems,Int.J.Syst.Sci.,47(6):1366-1375,2016.
    [31]I.Podlubny,Fractional Differential Equations,Academic Press,New York,NY,USA,1999.
    [32]Y.Li,Y.Q.Chen and I.Podlubny,Mittag-Leffler stability of fractional order nonlinear dynamic systems,Automatica,45(8):1965-1969,2009
    [33]S.P.Bhat and D.S.Bernstein,Finite-time stability of continuous autonomous systems,SIAM J.Contr.Optim.,38(3):751-766,2000
    [34]G.Hardy,J.Littlewood and G.Polya,Inequalities.London,U.K.:Cambridge Univ.Press,1951
    [35]Y.Wang,L.Gu,Y.Xu and X.Cao,Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode,IEEE Trans.Ind.Electron.,63(10):6194-6204,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700