用户名: 密码: 验证码:
蕹菜镉积累典型品种根际微生物群落特征研究
详细信息    查看官网全文
摘要
通过根箱试验研究蕹菜(Ipomoea aquatica Forsk.)镉低量积累(QLQ)和高量积累(T308)典型品种根际微生物群落特征。结果表明两个品种根际微生物数量、微生物生物量碳均显著高于非根际(p<0.05)。污染土壤和无污染土壤上T308根际可培养微生物总数、细菌和放线菌数量均显著高于QLQ(p<0.05);而污染土壤上T308根际真菌数量显著低于QLQ(p<0.05)。无污染土壤上QLQ根际微生物生物量碳显著高于T308(p<0.05)。两种土壤上平均颜色变化率(AWCD)均为QLQ高于T308。污染土壤上QLQ根际微生物对BIOLOG Eco板各类碳源的利用程度均高于T308,两个品种根际微生物对不同碳源的利用模式亦不同。表明两个蕹菜典型品种根际微生物群落结构和功能存在显著差异,代谢活性较高可能是QLQ区别于T308的重要根际微生物群落特征。
A rhizobox experiment was conducted to investigate microbial community characteristics in rhizosphere soil between two typcial cultivars of water spinach(Ipomoea aquatica Forsk.), a low-Cd cultivar(QLQ) and a high-Cd cultivar(T308). The results showed that populations of bacteria, actinomycetes and fungi and microbial biomass C in rhizosphere soil of water spinach were both significantly higher than those in non-rhizosphere soil(p<0.05). On contaminated and uncontaminated soil, populations of microbe, bacteria and actinomycetes in rhizosphere soil of T308 were significantly higher than those of QLQ(p<0.05). However, on contaminated soil, population of fungi in rhizosphere soil of T308 was significantly lower than that of QLQ(p<0.05). On uncontaminated soil, microbial biomass C in rhizosphere soil of QLQ wassignificantly higher than that of T308(p<0.05). The average well color development(AWCD) of QLQ was higher than that of T308. On contaminated soil, utilization efficiency of different carbon source types in BIOLOG Eco plates by rhizosphere microbial community of QLQ was higher than that of T308, and utilization patterns weredifferent between the cultivars. The results indicated that there were differences in microbial community structural and functional characteristics in rhizosphere soil between the typical water spinach cultivars, and the relatively higher metabolic capacity of soil microbial community might be one of the important characteristics that distinguish the low-Cd cultivar QLQ from the high-Cd cultivar T308.
引文
[1]BAATH E.Effects of heavy metal in soil on microbial processes and populations:a review[J].Water,Air,and Soil Pollution,1989,47:335–379.
    [2]KNIGHT B P,MCGRATH S P,CHAUDRI A M.Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium,copper,or zinc[J].Applied Environmental Microbiology,1997,63:39–43.
    [3]ROGERS B F,TATE R L.Temporal analysis of the soil microbial community along a toposequence in Pineland soils[J].Soil Biology and Biochemistry,2001,33(10):1389–1401.
    [4]李廷强,舒钦红,杨肖娥.不同程度重金属污染土壤对东南景天根际土壤微生物特征的影响[J].浙江大学学报:农业与生命科学版,2008,34(6):692–698.
    [5]DELORME T A,GAGLIARDI J V,ANGLE J S,et al.Influence of the zinc hyperaccumulator Thlaspi caerulescens J.&C.Presl.and the nonmetal accumulator Trifolium pratense L.on soil microbial populations[J].Canadian Journal Microbiology,2001,47(8):773–776.
    [6]KIDD P,BARCELO J,BERNAL M P,et al.Trace element behaviour at the root-soil interface:Implications in phytoremediation[J].Environmental and Experimental Botany,2009,67:243–259.
    [7]WHITING S N,de SOUZA M P,TERRY N.Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens[J].Environmental Science&Technology,2001,35:3144–3150.
    [8]LIU Yu,ZHU Yongguan,CHEN Baodong,et al.Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L.[J].Mycorrhiza,2005,15:187–192.
    [9]于涛,叶鑫,张海楼.保护地蔬菜重金属污染微生物修复的研究[J].安徽农业科学,2013,41(3):1065–1066.
    [10]YU Hui,WANG Junli,FANG Wei,et al.Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice[J].Science of the Total Environment,2006,370:302–309.
    [11]GRANT C A,CLARKE J M,DUGUID S,et al.Selection and breeding of plant cultivars to minimize cadmium accumulation[J].Science of the Total Environment,2008,390:301–310.
    [12]WANG Junli,YUAN Jiangang,YANG Zhongyi,et al.Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach(Ipomoea aquatica Forsk.)[J].Journal of Agricultural and Food Chemistry,2009,57:8942–8949.
    [13]GONG Yulian,YUAN Jiangang,YANG Zhongyi,et al.Cadmium and lead accumulation by typical cultivars of water spinach as responding to different soil conditions[J].Fresenius Environmental Bulletin,2010,19:190–197.
    [14]龚玉莲,杨中艺.蕹菜典型品种的根系形态学特征及与Cd吸收积累的关系[J].华南师范大学学报:自然科学版,2012,44(3):100–106.
    [15]HUANG Baifei,XIN Junliang,YANG Zhongyi,et al.Suppression subtractive hybridization(SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars[J].Journal of Agricultural and Food Chemistry,2009,57:8950–8962.
    [16]XIN Junliang,HUANG Baifei,YANG Zhongyi,et al.Responses of different water spinach cultivars and their hybrid to Cd,Pb and Cd-Pb exposures[J].Journal of Hazardous Materials,2010,175:468–476.
    [17]国家环境保护总局.中华人民共和国国家标准(HJ/T 332-2006):食用农产品产地环境质量评价标准[M].北京:中国环境科学出版社,2007.
    [18]WANG Zhongwen,SHAN Xiaoquan,ZHANG Shuzhen.Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils[J].Chemosphere,2002,46:1163–1171.
    [19]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:30–106.
    [20]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    [21]SPARLING G P,WEST A W.A direct extraction method to estimate soil microbial C:calibration in situ using microbial respiration and 14C labelled cells[J].Soil Biology and Biochemistry,1988,20:337–343.
    [22]LI Weihua,ZHANG Chongbang,GAO Guijuan,et al.Relationship between Mikania micrantha invasion and soil microbial biomass,respiration and functional diversity[J].Plant and Soil,2007,296:197–207.
    [23]PRESTON-MAFHAM J,BODDY L,RANDERSON P F.Analysis of microbial community functional diversity using sole-carbon-source utilization profile-a critique[J].FEMS Microbiology Ecology,2002,42(1):1–14.
    [24]HACKETT C A,GRIFFITHS B S.Statistical analysis of the time-course of Biolog substrate utilization[J].Journal of Microbiological Methods,1997,30:63–69.
    [25]FOLMAN L B,POSTMA J,Van VEEN J A.Ecophysiological characterization of rhizosphere bacterial communities at different root locations and plant developmental stages of cucumber grown on rockwool[J].Microbial Ecology,2001,42:586–597.
    [26]KENNEDY A C,SMITH K L.Soil microbial diversity and the sustainability of agricultural soils[J].Plant and Soil,1995,170:75–86.
    [27]HAACK S K,GARCHOW H,KLUG M J,et al.Analysis of factors affecting the accuracy,reproducibility,and interpretation of microbial community carbon source utilization patterns[J].Applied Environmental Microbiology,1995,61(4):1458–1468.
    [28]武钰坤,刘永军,司英明,等.人工湿地不同植物根际微生物群落多样性比较研究[J].生态科学,2012,31(3):318–323.
    [29]龙新宪,刘洪彦,戴军,等.两种生态型东南景天根际与非根际土壤微生物特征的差异性[J].土壤学报,2009,46(3):547–552.
    [30]龙新宪,刘洪彦,王艳红,等.不同Zn化合物对东南景天根圈土壤微生物特征的影响[J].农业环境科学学报,2007,26(6):2231–2238.
    [31]龚玉莲,龙燮强,陈壖,等.蕹菜典型品种中Cd、Pb、Cr、Ni等重金属含量及其相关性[J].现代生物医学进展,2012,12(12):2235–2238.
    [32]LI Tingqiang,DI Zhenzhen,YANG Xiaoe,et al.Effects of dissovled organic matter from the rhizospere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils[J].Journal of Hazardous Materials,2011,192:1616–1622.
    [33]腾应,黄昌勇,骆永明,等.重金属复合污染下土壤微生物群落功能多样性动力学特征[J].土壤学报,2004,41(5):735–741.
    [34]杨恒山,张庆国,刘晶,等.不同生长年限紫花苜蓿根系及其土壤微生物的分布[J].草业科学,2007,24(11):38–41.
    [35]尧水红,刘艳青,王庆海,等.河滨缓冲带植物根系和根际微生物特征及其对农业面源污染物去除效果[J].中国生态农业学报,2010,18(2):365–370.
    [36]龚玉莲.蕹菜镉积累典型品种的根际研究[D].中山大学,2009:85–109.
    [37]王艳红,龙新宪,吴启堂.两种生态型东南景天根系分泌物的差异性[J].生态环境,2008,17(2):751–757.
    [38]施积炎,陈英旭,林琦,等.根分泌物与微生物对污染土壤重金属活性的影响[J].中国环境科学,2004,24(3):316–319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700