用户名: 密码: 验证码:
寡肽分子凝胶在微/纳米受限空间内自组装的调控
详细信息    查看官网全文
摘要
近年来,生物分子通过非共价键如氢键、疏水作用力、π-π堆积、静电作用力等协同作用组装形成多种纳米结构(纳米纤维等),进而交联形成凝胶网络的研究正受到越来越多的关注。这种通过非共价键组装的形式在生命体中普遍存在(例如细胞和蛋白质)。以寡肽分子为例,不仅是生物内源分子,而且可以在分子层次上进行编程设计和功能化,通过引入功能性基团增强分子间的识别组装,从而控制组装体的形状、结构、功能和用途,赋予凝胶材料多种刺激响应性(例如:pH、温度、光和酶等),在设计和开发新型智能材料、纳米材料和器件、生物医用材料等方面具有独特的优势。然而目前的研究仍以通过分子层面调控制备宏观尺寸凝胶材料为主,在生物应用上有很大的局限性。本实验室通过结合自组装技术与物理化学方法,实现了在微纳米多孔球内、微乳液内、油水界面等微/纳尺度受限空间内肽分子自组装行为的研究和调控,构建了一系列多尺度分子组装凝胶功能体系。
Peptides are versatile building blocks for the production, via molecular self-assembly, of nanostructures for a range of applications, such as biosensors, controlled release systems, cell scaffolds, biocatalysis, and nanotemplating.Intermolecular noncovalent interactions such as hydrogen bonding, ionic interactions, and π-π stacking between peptide components can lead to the formation of fibers, which in turn entangle to form 3D gel networks. Self-assembly of nanostructured materials is typically achieved with minimal control over the macroscopic size and shape of the resulting material. We demonstrated the developments and control of confining the formation of these structures to certain areas uses physicochemistry approaches in emulsion droplets, porous nanoparticles or water/oil interfaces to produce multicompartment hydrogel systems in micro-/nano- scale for many bioapplications.
引文
[1]Bai,S.;*Pappas,C.G..;Debnath,S.;Frederix,P.W.J.M.;Leckie,J.;Fleming,S.;Ulijn,R.V.*ACS Nano2014,8:7005.
    [2]Bai,S.;Debnath,S.;Gibson,K.;Schlicht,B.;Bayne,L.;Zagnoni,M.;*Ulijn,R.V.*Small 2014,10:285.
    [3]Scott,G.;Roy,S.;Abul-Haija,Y.M.;Fleming,S.;Bai,S.;*Ulijn,R.V.*Langmuir 2013,29:14321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700