用户名: 密码: 验证码:
基于粘弹性-超弹性本构理论的人耳动力学建模
详细信息    查看官网全文
摘要
为了研究人耳系统的动力学特性,利用微CT扫描和逆向成型技术建立了包含外耳道、中耳以及耳蜗的整耳有限元模型,并充分考虑人耳系统软组织的粘弹性和超弹性材料属性,完成了基于粘弹性-超弹性本构的人耳动力学模型。分别用Ogden应变能函数和Prony级数对人耳软组织的超弹性和粘弹性实验数据进行拟合,并通过Mises等效应变,计算出能应用于动态分析的长期模量,实现粘弹性和超弹性本构的联合建模。通过声-固±-液多场耦合分析,仿真结果与实验数据吻合良好,验证了模型的有效性。并在此基础上,分析了中耳静压(2Kpa)作用下的人耳系统动力学特性。结果表明,考虑粘弹性材料会提高人耳系统在高频处的动态响应;在中耳静压作用下,中耳结构的超弹性材料会发生刚化效应。研究结果说明在人耳动力学建模中同时考虑人耳软组织的粘弹性和超弹性材料是必要的,本文的研究方法为建立更精确的人耳有限元模型提供基础。
To analyze the dynamic characteristic of human ear auditory system,a finite element model of human ear consisting of the ear canal,middle ear and cochlear was first constructed via micro-computer tomography imaging and the technique of reverse engineering and considered the viscoelastic and hyperelastic properties of soft tissues in the middle ear,then a dynamic modeling of human ear based on visco-hyperelastic constitutive theory was built. The Ogden strain-energy function and the Prony series were separately adopted to fit the experimental data of hyperelastic and viscoelastic properties of soft tissues,and the long-term modulus applied to dynamic analysis was calculated through the Mises equivalent strain realizing the combination of viscoelastic and hyperelasctic constitutive modeling. The validity of the model was verified by comparing the simulated results via multiphysics analysis and experimental data. On this basis,the effects of middle-ear pressure(±2Kpa) on dynamic responses of human ear. The results indicated that considering the viscoelastic properties of soft tissues can give a higher dynamic output of human ear at high frequency and the static-pressure loading of the eardrum can lead to the middle-ear stiffening. The research results showed that it is necessary for dynamic modeling of human ear to consider both viscoelastic and hyperelastic properties of soft tissues and the research method in this paper would provide a basis to establish a more accurate finite element model of human ear.
引文
[1]WANG X,WANG L,ZHOU J,et al.Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea[J].Comput Method Biomec,2012,17(10):1096-107.
    [2]NIE X,LIU H,HUANG X,et al.Finite element model of human ear reconstruction through micro-computer tomography[J].Acta Otolaryngol,2011,131(3):269-76.
    [3]CHENG T,GAN R Z.Experimental measurement and modeling analysis on mechanical properties of tensor tympani tendon[J].Med Eng Phys,2008,30(3):358-66.
    [4]DAPHALAPURKAR N P,DAI C,GAN R Z,et al.Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation[J].J Mech Behav Biomed Mater,2009,2(1):82-92.
    [5]GHADARGHADAR N,AGRAWAL S K,SAMANI A,et al.Estimation of the quasi-static Young's modulus of the eardrum using a pressurization technique[J].Comput Meth Prog Bio,2013,110(3):231-9.
    [6]MACHIRAJU C,PHAN A-V,PEARSALL A,et al.Viscoelastic studies of human subscapularis tendon:Relaxation test and a Wiechert model[J].Comput Meth Prog Bio,2006,83(1):29-33.
    [7]PE A E,CALVO B,MART NEZ M,et al.An anisotropic visco-hyperelastic model for ligaments at finite strains.Formulation and computational aspects[J].Int J Solids Struct,2007,44(3):760-78.
    [8]TAYLOR Z A,COMAS O,CHENG M,et al.On modelling of anisotropic viscoelasticity for soft tissue simulation:Numerical solution and GPU execution[J].Med Image Anal,2009,13(2):234-44.
    [9]ZHANG X,GAN R Z.Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition[J].Ann Biomed Eng,2012,41(1):205-14.
    [10]WANG X,CHENG T,GAN R Z.Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear[J].J Acoust Soc Am,2007,122(906).
    [11]TIAN J,HUANG X,RAO Z,et al.Finite element analysis of the effect of actuator coupling conditions on round window stimulation[J].J Mech Med Biol,2015,15(04):1550048.
    [12]田佳彬,饶柱石,塔娜,等.粘弹性本构对人耳动力学特性影响的数值研究[J].振动与冲击,2015,(22):74-81.
    [13]PARK S,SCHAPERY R.Methods of interconversion between linear viscoelastic material functions.Part I—A numerical method based on Prony series[J].Int J Solids Struct,1999,36(11):1653-75.
    [14]ZHANG X,GAN R Z.A comprehensive model of human ear for analysis of implantable hearing devices[J].IEEE Trans Biomed Eng,2011,58(10):3024-7.
    [15]ZHANG X,GAN R Z.Dynamic properties of human round window membrane in auditory frequencies running head:Dynamic properties of round window membrane[J].Med Eng Phys,2013,35(3):310-8.
    [16]GAN R Z,YANG F,ZHANG X,et al.Mechanical properties of stapedial annular ligament[J].Med Eng Phys,2011,33(3):330-9.
    [17]SOWERBY R,CHAKRAVARTI P.The determination of the equivalent strain in finite,homogeneous deformation processes[J].J Strain Anal Eng,1983,18(2):119-23.
    [18]GAN R Z,WOOD M W,DORMER K J.Human middle ear transfer function measured by double laser interferometry system[J].Otol Neurotol,2004,25(4):423-35.
    [19]PURIA S,PEAKE W T,ROSOWSKI J J.Sound-pressure measurements in the cochlear vestibule of human-cadaver ears[J].J Acoust Soc Am,1997,101(5):2754-70.
    [20]NAKAJIMA H H,DONG W,OLSON E S,et al.Differential intracochlear sound pressure measurements in normal human temporal bones[J].J Assoc Res Otolaryngol,2009,10(1):23-36.
    [21]HOMMA K,SHIMIZU Y,KIM N,et al.Effects of ear-canal pressurization on middle-ear bone-and air-conduction responses[J].Hear Res,2010,263(1):204-15.
    [22]MURAKAMI S,GYO K,GOODE R L.Effect of middle ear pressure change on middle ear mechanics[J].Acta Otolaryngol,1997,117(3):390-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700