用户名: 密码: 验证码:
土豆冻结过程中不同风速对相变界面的影响
详细信息    查看官网全文
摘要
选择新鲜土豆为研究对象,采用数值模拟与实验相结合的方法,结合土豆30~-40℃范围内的热物性,分析冻结过程中土豆在不同冻结风速下的相变界面的移动规律。通过将模拟与实验结果分析发现:冷却空气温度为-40℃时,风速从1m/s依次增大到2m/s、4m/s和8m/s,相变界面从最外侧移动到中心时间依次减少约700s、300s和400s。随着风速的增大,相变界面移动速率增大的幅度逐渐减小。冷风机电源频率f=0Hz时,下侧相变界面的平均移动速率最快。冷风机电源频率f=50Hz时,上侧相变界面的平均移动速率最快,下侧相变界面的平均移动速率最慢。相变界面在向中心的移动过程中速度逐渐增大。
Fresh potatoes were chosen for the study,using a combination method of numerical simulation and experiment,analyzed the influences on the phase change interface movement,which was caused by the cooling air velocity and temperature according to the thermal conductivity and fitted specific heat capacity polynomial based on the experiments conducted within the range of 30 ~-40 ℃.The simulation and experimental results show that:When the temperature of the cooling air was-40 ℃,the moving speed of the air increased from 1m/s to 2m/s,4m/s and 8m/s successively,the time of the phase change interface moved from the outermost to the center decreased by 700 s,300s and 400 s respectively.However,as the speed of the wind get greater,the magnitude of the phase change interface moving speed increasing rate decreases gradually.When the frequency of the cooling fan power was 0Hz,the average moving speed of the lower phase change interface was the greatest.When the frequency of the cooling fan power was50 Hz,the moving speed of the upper phase change interface was the greatest,and the moving speed of the lower phase change interface was the smallest.The speed of the phase change interface moving towards the center increases gradually.
引文
[1]Somwang Songsaeng,Pairat Sophanodora.Janthira Kaewsrithong,et al.Quality changes in oyster(Crassostrea belcheri)during frozen storage as affected by freezing and antioxidant[J].Food Chemistry,2010,(123):286-290.
    [2]Min Zhang,Zhen-Hua Duan,et al.Effects of freezing conditions on quality of areca fruits[J].Journal of Food Engineering,2004,(61):393-397.
    [3]徐红艳,华泽钊,陈儿同等.不同保存温度下生物材料冻结过程中断裂分析[J].制冷学报,2000,(2):49-54.
    [4]Cleland A.C.,Oxilgen S.Thermal Design Calculations for Food Freezing Equipment-Past,Present and Future[J].International Journal of Refrigeration,1998,21(5):359-371.
    [5]张洁,华泽钊.模拟生物组织冻结过程计算分析[J].低温工程,2000,1:53-59.
    [6]徐红艳,华泽钊,张洁.生物组织冻结过程中的应力分析[J].真空与低温,2000,6(2):98-103.
    [7]Q.Tuan Pham.Freezing time formulas for foods with low moisture content,low freezing point and for cryogenic freezing[J].Journal of Food Engineering,2014,(127):85-92.
    [8]Zhengfu Wang,Han Wu,Guanghua Zhao et al.One-dimensional finite-difference modeling on temperature history and freezing time of individual food[J].Journal of Food Engineering,2007,(79):502-510.
    [9]Mehmet Akif Ezan,Muhammet Ozdogan,Aytunc Erek.Experimental study on charging and discharging periods of water in a latent heat storage unit[J].International Journal of Thermal Sciences,2011,(50):2205-2219.
    [10]Hongbo Tan,Yanzhong Li,Hanfei Tuo et al.Experimental study on liquid/solid phase change for cold energy storage of Liquefied Natural Gas(LNG)refrigerated vehicle[J].Energy,2010,(35):1927-1935.
    [11]Babak Kamkari,Hossein Shokouhmand,Frank Bruno.Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure[J].International Journal of Heat and Mass Transfer,2014,(72):186-200.
    [12]邵晓丹,廖明仕,刘艳华.环形通道中蓄能物质的相变传热特性实验研究[J].建筑节能,2010,12:29-32.
    [13]J.B.Dima,M.V.Santos,P.J.Baron et al.Experimental study and numerical modeling of the freezing process of marine products[J].Food and Bioproducts Processing,2014,92(1):54-66.
    [14]钱壬章,俞昌铭.传热分析与计算[M].高等教育出版社,1987.
    [15]杨世铭,陶文铨.传热学[M].2006:121,270,212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700