用户名: 密码: 验证码:
Herschel-Bulkley模型下磁流变减振器旁路泊肃叶流动分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of byroad Poiseuille flow in magnetorheological damper based on the Herschel-Bulkley model
  • 作者:陈巍 ; 张广 ; 陈冬 ; 杨辉静
  • 英文作者:Chen Wei;Zhang Guang;Chen Dong;Yang Huijing;Hebei Chemical & Pharmaceutical Vocational Technology College;School of Mechanical Engineering, Nanjing University of Science and Technology;
  • 关键词:磁流变胶 ; Herschel-Bulkley ; 泊肃叶流 ; 柱塞区域
  • 英文关键词:magnetorheological gel;;Herschel-Bulkley;;Poiseuille flow;;plunger region
  • 中文刊名:YYLX
  • 英文刊名:Chinese Journal of Applied Mechanics
  • 机构:河北化工医药职业技术学院;南京理工大学机械工程学院;
  • 出版日期:2018-11-30 10:54
  • 出版单位:应用力学学报
  • 年:2019
  • 期:v.36;No.156
  • 基金:河北省教育厅青年基金项目(QN2018206)
  • 语种:中文;
  • 页:YYLX201902020
  • 页数:9
  • CN:02
  • ISSN:61-1112/O3
  • 分类号:142-149+265
摘要
制备了羰基铁粉(CIP)的质量分数为70%的硅树脂基磁流变胶。用安东帕MCR-301型流变仪对其流变特性进行了测量,并对测试结果进行了Herschel-Bulkley本构模型参数识别。最后对MRG-70在该模型下磁流变减振器旁路中的泊肃叶(Poiseuille)流动展开了分析。试验及分析结果表明,在外加磁场下,Herschel-Bulkley本构模型中非牛顿指数n<1。剪切应力随半径的增大而线性增大;当τ_r>τ_y形成剪切流,反之则为柱塞流动。在剪切流动区域内,流速随半径增大而非线性降低,剪切速率随半径增大而非线性增大。磁感应强度越大,柱塞流区域越大,柱塞流区域内剪切速率恒为0。体积流量随磁感应强度增强而非线性减小。在0mT~500mT之间体积流量随磁感应强度变化剧烈,进一步增加磁感应强度则变化缓慢。
        A kind of magnetorheological gel based silicone resin with the mass fraction of 70% for CIP is prepared, and its rheological characteristic is measured used MCR-301 rheometer. Parameter of Herschel-Bulkley constitutive model is identified. At last, the Poiseuille flow in the bypass of magnetorheological damper based on this model is analyzed. The results of test and analysis show that the non-Newton exponent n<1 under the applied magnetic field. The shear stress increases linearly with the increase of radius. The shear flow is formed when τ_r>τ_y, and conversely the plunger flow appears. In the shear flow area, the velocity decreases nonlinearly with the increase of radius; and the shear rate increases nonlinearly with the increase of the radius. The greater the magnetic induction intensity, the larger the plunger flow area, and the shear rate in the plunger flow area is zero. The volume flow is decreases nonlinearly with the increase of magnetic induction intensity. When the magnetic induction intensity is between 0 mT~500 mT, the volume flow rate changes violently, and it changes slowly when the magnetic induction intensity is further strengthened.
引文
[1]CHENP,BAI X X,QIAN L J.Magnetorheological fluid behavior in high-frequency oscillatory squeeze mode:experimental tests and modelling[J].Journal of applied physics,2016,119(10):555-569.
    [2]ZHANG P,LEEK H,LEEC H.Friction behavior of magnetorheological fluids with different material types and magnetic field strength[J].Chinese journal of mechanical engineering,2016,29(1):84-90.
    [3]PANG H,XUAN S,SUN C,et al.A novel energy absorber based on the magnetorheological gel[J].Smart materials&structures,2017.
    [4]廖君华.端部控制磁流变液阻尼器实验研究[J].应用力学学报,2017,34(3):583-588.(LIAO Junhua.Experimental study on end controlled magnetorheological fluid damper[J].Journal of applied mechanics,2017,34(3):583-588(in Chinese)).
    [5]KOWOL P,PILCH Z.Analysis of the magnetorheological clutch working at full slip state[J].Przeglad elektrotechniczny,2015,1(6):110-113.
    [6]NGUYEN Q H,CHOI S B.Optimal design of MR shock absorber and application to vehicle suspension[J].Smart materials&structures,2009,18(3):035012.
    [7]SHAFRIR S N,LAMBROPOULOS J C,JACOBS S D.Amagnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides[J].Precision engineering,2007,31(2):83-93.
    [8]WILSON M J,FUCHS A.Development and characterization of magnetorheological polymer gels[J].Journal of applied polymer science,2002,84(14):2733-2742.
    [9]金京设,陈照波,程明,等.改进阻尼特性的内置平行双线圈磁流变阻尼器研究[J].农业机械学报,2017,48(3):368-375.(JINJingshe,CHEN Zhaobo,CHENG Ming,et al.Research on the improved damping characteristics of built-in parallel double loop magnetorheological dampers[J].Journal of agricultural machinery,2017,48(3):368-375(in Chinese)).
    [10]YANG P,YU M,FU J,et al.The damping behavior of magnetorheological gel based on polyurethane matrix[J].Polymer composites,2017,38(7):1248-1258.
    [11]GAO C Y,KIM M W,BAE D H,et al.Fe3O4 nanoparticle-embedded polystyrene composite particles fabricated via a Shirasu porous glass membrane technique and their magnetorheology[J].Polymer,2017,125:21-29.
    [12]LI S,WANG G,LI S.New type relief valve using magneto-rheological fluid[J].Journal of magnetism&magnetic materials,2005,252(1/3):224-228.
    [13]YANG P,YU M,FU J.Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel[J].Journal of nanoparticle research,2016,18(3):61.
    [14]AID S,ISMAIL I,WAHID S A,et al.Magnetorheological fluid materials properties,rheological behaviour and device design in valve application[C]//Proceedings of 2nd International Manufacturing Engineering Conference.[S.l.]:[s.n.],2005.
    [15]郑军,张光辉,曹兴进.传动装置中磁流变液的稳态流动分析[J].中南大学学报(自然科学版),2008,39(1):149-154.(ZHENG Jun,ZHANG Guanghui,CAO Xingjin.The steady state flow analysis of magnetorheological fluid in the transmission system[J].Journal of central south university(natural science edition),2008,39(1):149-154(in Chinese)).
    [16]贺建民,黄金,钟银辉.磁流变液在圆筒间的粘塑性流动[J].功能材料,2006,37(6):992-993.(HE Jianmin,HUANG Jin,ZHONGYinhui.Magnetorheological fluid in the cylinder between the visco plastic flow[J].Functional materials,2006,37(6):992-993(in Chinese)).
    [17]沈娜,王炅.冲击载荷下磁流变液在阻尼通道内的流体力学模型[C]//2009全国功能材料科技与产业高层论坛,镇江:[出版者不祥],2009.(SHEN Na,WANG Jiong.Fluid mechanics model of under impact load of magnetorheological fluid in the damping passage[C]//Proceedings of the 2009 Functional Materials Technology and Industry Forum.Zhenjing:[s.n.],2009(in Chinese)).
    [18]NGUYEN Q H,CHOI S B,LEE Y S,et al.An analytical method for optimal design of MR valve structures[J].Smart materials&structures,2009,18(9):095032.
    [19]LAUM H M,RADY M.Analytical solutions for squeeze flow with partial wall slip[J].Journal of non-Newtonian fluid mechanics,1999,81(1/2):1-15.
    [20]DAS M,JAIN V K.Fluid flow analysis of magnetorheological abrasive flow finishing(MRAFF)process[J].International journal of advanced manufacturing technology,2008,38(5/6):613-621.
    [21]FUCHS A,XIN M,GORDANINEIJAD F,et al.Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels[J].Journal of applied polymer science,2004,92(2):1176-1182.
    [22]WILSON M J,FUCHS A.Development and characterization of magnetorheological polymer gels[J].Journal of applied polymer science,2002,84(14):2733-2742.
    [23]LI J.Electrorheological and magnetorheological duct flow in shear-flow mode using Herschel-Bulkley constitutive model[J].Journal of engineering mechanics,2003,129(129):1459-1465.
    [24]DIMOCK G.Quasi-steady bingham biplastic analysis of electrorheological and magnetorheological fluid dampers[J].Journal of intelligent material systems&structures,2002,13(9):549-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700