用户名: 密码: 验证码:
Fabricating high-performance sodium ion capacitors with P2-Na_(0.67)Co_(0.5)Mn_(0.5)O_2 and MOF-derived carbon
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabricating high-performance sodium ion capacitors with P2-Na_(0.67)Co_(0.5)Mn_(0.5)O_2 and MOF-derived carbon
  • 作者:Haichen ; Gu ; Lingjun ; Kong ; Huijuan ; Cui ; Xianlong ; Zhou ; Zhaojun ; Xie ; Zhen ; Zhou
  • 英文作者:Haichen Gu;Lingjun Kong;Huijuan Cui;Xianlong Zhou;Zhaojun Xie;Zhen Zhou;School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University;
  • 英文关键词:Energy density;;Power density;;P2-phase material;;Zeolitic imidazolate framework-8;;Sodium ion capacitors
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2019
  • 期:v.28
  • 基金:supported by Tianjin Municipal Science and Technology Commission (16PTSYJC00010 and 17JCZDJC37100);; the National Natural Science Foundation of China (21773126)
  • 语种:英文;
  • 页:TRQZ201901010
  • 页数:6
  • CN:01
  • ISSN:10-1287/O6
  • 分类号:87-92
摘要
Sodium ion capacitors(SICs) have been considered as a kind of promising devices to achieve both high power and energy density. However, it is still a challenge to achieve high energy output at elevated power delivery due to the poor rate capability of battery-type electrode materials and the kinetic mismatch with capacitor-type electrode materials. In this work, to fabricate SICs, P2-Na_(0.67)Co_(0.5)Mn_(0.5)O_2(P2-NCM)was chosen as the battery-type cathode material, and a typical metal-organic framework(MOF) material,zeolitic imidazolate framework-8(ZIF-8) derived carbon(ZDC) was utilized as the capacitor-type anode material. Due to the kinetic match and high-rate performance of both electrodes, the ZDC//P2-NCM SICs exhibited an energy output of 18.8 Wh kg~(-1) at a high power delivery of 12.75 kW kg~(-1).
        Sodium ion capacitors(SICs) have been considered as a kind of promising devices to achieve both high power and energy density. However, it is still a challenge to achieve high energy output at elevated power delivery due to the poor rate capability of battery-type electrode materials and the kinetic mismatch with capacitor-type electrode materials. In this work, to fabricate SICs, P2-Na_(0.67)Co_(0.5)Mn_(0.5)O_2(P2-NCM)was chosen as the battery-type cathode material, and a typical metal-organic framework(MOF) material,zeolitic imidazolate framework-8(ZIF-8) derived carbon(ZDC) was utilized as the capacitor-type anode material. Due to the kinetic match and high-rate performance of both electrodes, the ZDC//P2-NCM SICs exhibited an energy output of 18.8 Wh kg~(-1) at a high power delivery of 12.75 kW kg~(-1).
引文
[1]N.Armaroli,V.Balzani,Energy Environ.Sci.4(2011)3193-3222.
    [2]Z.Jian,V.Raju,Z.Li,Z.Xing,Y.-S.Hu,X.Ji,Adv.Funct.Mater.25(2015)5778-5785.
    [3]H.Gu,Y.Zhu,J.Yang,J.Wei,Z.Zhou,ChemNanoMat 2(2016)578-587.
    [4]Z.Le,F.Liu,P.Nie,X.Li,X.Liu,Z.Bian,G.Chen,H.B.Wu,Y.Lu,ACS Nano 11(2017)2952-2960.
    [5]M.Yang,Y.Zhong,J.Ren,X.Zhou,J.Wei,Z.Zhou,Adv.Energy Mater.5(2015)1500550.
    [6]M.Yang,Y.Zhong,J.Bao,X.Zhou,J.Wei,Z.Zhou,J.Mater.Chem.A 3(2015)11387-11394.
    [7]M.Yang,Z.Zhou,Adv.Sci.4(2017)1600408.
    [8]J.Ren,L.Su,X.Qin,M.Yang,J.Wei,Z.Zhou,P.Shen,J.Power Sources 264(2014)108-113.
    [9]W.S.V.Lee,E.Peng,M.Li,X.Huang,J.M.Xue,Nano Energy 27(2016)202-212.
    [10]J.Luo,W.Zhang,H.Yuan,C.Jin,L.Zhang,H.Huang,C.Liang,Y.Xia,J.Zhang,Y.Gan,X.Tao,ACS Nano 11(2017)2459-2469.
    [11]H.Park,M.Kim,F.Xu,C.Jung,S.M.Hong,C.M.Koo,J.Power Sources 283(2015)68-73.
    [12]A.Jain,V.Aravindan,S.Jayaraman,P.S.Kumar,R.Balasubramanian,S.Ramakrishna,S.Madhavi,M.P.Srinivasan,Sci.Rep.3(2013)3002.
    [13]S.-W.Kim,D.-H.Seo,X.Ma,G.Ceder,K.Kang,Adv.Energy Mater.2(2012)710-721.
    [14]M.D.Slater,D.Kim,E.Lee,C.S.Johnson,Adv.Funct.Mater.23(2013)947-958.
    [15]D.Chao,C.Zhu,P.Yang,X.Xia,J.Liu,J.Wang,X.Fan,S.V.Savilov,J.Lin,H.J.Fan,Z.X.Shen,Nat.Commum.7(2016)12122.
    [16]Y.Cao,L.Xiao,M.L.Sushko,W.Wang,B.Schwenzer,J.Xiao,Z.Nie,L.V.Saraf,Z.Yang,J.Liu,Nano Lett.12(2012)3783-3787.
    [17]X.Wang,S.Kajiyama,H.Linuma,E.Hosono,S.Oro,I.Moriguchi,M.Okubo,A.Yamada,Nat.Commun.6(2015)6544.
    [18]F.Li,Z.Zhou,Small 14(2018)1702961.
    [19]Y.-E.Zhu,L.P.Yang,J.Sheng,Y.N.Chen,H.C.Gu,J.P.Wei,Z.Zhou,Adv.Energy Mater.7(2017)1701222.
    [20]Z.Chen,V.Augustyn,X.Jia,Q.Xiao,B.Dunn,Y.Lu,ACS Nano 6(2012)4319-4327.
    [21]H.Li,Y.Zhu,S.Dong,L.Shen,Z.Chen,X.Zhang,G.Yu,Chem.Mater.28(2016)5753-5760.
    [22]E.Lim,C.Jo,M.S.Kim,M.-H.Kim,J.Chun,H.Kim,J.Park,K.C.Roh,K.Kang,S.Yoon,J.Lee,Adv.Funct.Mater.26(2016)3711-3719.
    [23]S.Dong,L.Shen,H.Li,P.Nie,Y.Zhu,Q.Sheng,X.Zhang,J.Mater.Chem.A 3(2015)21277-21283.
    [24]R.Thangavel,K.Kaliyappan,K.Kang,X.Sun,Y.-S.Lee,Adv.Energy Mater.6(2016)1502199.
    [25]X.Zhang,Z.H.Zhang,Z.Zhou,J.Energy Chem.27(2018)73-85.
    [26]D.Carlier,J.H.Cheng,R.Berthelot,M.Guignard,M.Yoncheva,R.Stoyanova,B.J.Hwang,C.Delmas,Dalton Trans.40(2011)9306-9312.
    [27]H.Kim,H.Kim,Z.Ding,M.H.Lee,K.Lim,G.Yoon,K.Kang,Adv.Energy Mater.6(2016)1600943.
    [28]S.Guo,P.Liu,H.Yu,Y.Zhu,M.Chen,M.Ishida,H.Zhou,Angew.Chem.Int.Ed.54(2015)5894-5899.
    [29]Y.Zhang,K.Ye,K.Cheng,G.Wang,D.Cao,Electrochim.Acta 148(2014)195-202.
    [30]Y.Zhang,K.Cheng,K.Ye,Y.Cao,W.Zhao,G.Wang,D.Cao,Electrochim.Acta182(2015)971-978.
    [31]H.Kim,M.-Y.Cho,M.-H.Kim,K.-Y.Park,H.Gwon,Y.Lee,K.C.Roh,K.Kang,Adv.Energy Mater.3(2013)1500-1506.
    [32]P.Simon,Y.Gogotsi,B.Dunn,Science 343(2014)1210-1211.
    [33]V.Aravindan,D.Mhamane,W.C.Ling,S.Ogale,S.Madhavi,ChemSusChem 6(2013)2240-2244.
    [34]S.R.Sivakkumar,A.G.Pandolfo,Electrochim.Acta 65(2012)280-287.
    [35]J.Ding,Z.Li,K.Cui,S.Boyer,D.Karpuzov,D.Mitlin,Nano Energy 23(2016)129-137.
    [36]X.Zhuang,F.Zhang,D.Wu,X.Feng,Adv.Mater.26(2014)3081-3086.
    [37]X.Wei,S.Wan,S.Gao,Nano Energy 28(2016)206-215.
    [38]M.Yang,Y.Zhong,L.Su,J.Wei,Z.Zhou,Chem.Eur.J.20(2014)5046-5053.
    [39]Y.Zhu,X.Qi,X.Chen,X.Zhou,X.Zhang,J.Wei,Y.Hu,Z.Zhou,J.Mater.Chem.A 4(2016)11103-11109.
    [40]S.R.Venna,J.B.Jasinski,M.A.Carreon,J.Am.Chem.Soc.132(2010)18030-18033.
    [41]S.Qiu,L.Xiao,M.L.Sushko,K.S.Han,Y.Shao,M.Yan,X.Liang,L.Mai,J.Feng,Y.Cao,X.Ai,H.Yang,J.Liu,Adv.Energy Mater.7(2007)1700403.
    [42]S.You,M.Ma,W.Wang,D.Qi,X.Chen,J.Qu,N.Ren,Adv.Energy Mater.7(2017)1601364.
    [43]Z.Tan,K.Ni,G.Chen,W.Zeng,Z.Tao,M.Ikram,Q.Zhang,H.Wang,L.Sun,X.Zhu,X.Wu,H.Ji,R.S.Ruoff,Y.Zhu,Adv.Mater.29(2017)1603414.
    [44]S.Huang,Y.Li,Y.Feng,H.An,P.Long,C.Qin,W.Feng,J.Mater.Chem.A 3(2015)23095-23105.
    [45]D.Xu,C.Chen,J.Xie,B.Zhang,L.Miao,J.Cai,Y.Huang,L.Zhang,Adv.Energy Mater.6(2016)1501929.
    [46]M.Sathiya,A.S.Prakash,K.Ramesha,J.-M.Tarascon,A.K.Shukla,J.Am.Chem.Soc.133(2011)16291-16299.
    [47]L.Zhao,L.Qi,H.Wang,J.Power Sources 242(2013)597-603.
    [48]J.Yin,L.Qi,H.Wang,ACS Appl.Mater.Interface 4(2012)2762-2768.
    [49]Y.Gogotsi,P.Simon,Science 334(2011)917-918.
    [50]H.S.Choi,J.H.Im,T.H.Kim,J.H.Park,C.R.Park,J.Mater.Chem.22(2012)16986-16993.
    [51]F.Zhang,T.Zhang,X.Yang,L.Zhang,K.Leng,Y.Huang,Y.Chen,Energy Environ.Sci.6(2013)1623-1632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700