用户名: 密码: 验证码:
基于x-LMS的智能叶片风力机复合主动降载控制方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Compound Control Method for Active Load Alleviation of a Smart Blade Wind Turbine Based on x-LMS
  • 作者:张文广 ; 王奕枫 ; 刘海鹏 ; 刘瑞杰
  • 英文作者:ZHANG Wenguang;WANG Yifeng;LIU Haipeng;LIU Ruijie;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University;School of Control and Computer Engineering, North China Electric Power University;
  • 关键词:风力机 ; 非定常气动模型 ; 尾缘襟翼 ; 独立变桨距 ; x-LMS
  • 英文关键词:wind turbine;;unsteady aerodynamic model;;trailing edge flap;;individual variable-pitch control;;x-LMS
  • 中文刊名:DONG
  • 英文刊名:Journal of Chinese Society of Power Engineering
  • 机构:华北电力大学新能源电力系统国家重点实验室;华北电力大学控制与计算机工程学院;
  • 出版日期:2019-05-15
  • 出版单位:动力工程学报
  • 年:2019
  • 期:v.39;No.293
  • 基金:国家重点研发计划资助项目(2017YFB0602105);; 北京市共建资助项目(GJ2017006);; 中央高校基本科研业务费专项资金资助项目(2018ZD05)
  • 语种:中文;
  • 页:DONG201905010
  • 页数:9
  • CN:05
  • ISSN:31-2041/TK
  • 分类号:70-78
摘要
为研究大型风力机的主动降载控制方法,以NREL 5 MW参考风力机为研究对象,建立了具有尾缘襟翼的智能叶片风力机非定常气动模型,并分析其非定常气动性能。基于x-LMS分别对桨距角和尾缘襟翼角进行控制,提出将二者结合的复合主动降载控制方法,并分析了在不同风况下所提控制方法的控制效果。结果表明:所建模型可有效模拟出智能叶片风力机的非定常气动性能;所提控制方法可同时抑制高频与低频叶根挥舞弯矩波动,并显著降低叶片疲劳载荷,有利于风力机的稳定运行。
        To study the control method for active load alleviation of large-scale wind turbines, taking the NREL 5 MW reference wind turbine as a research object, an unsteady aerodynamic model was established for the smart blade wind turbine with trailing edge flaps(TEFs), while its unsteady aerodynamic characteristics were analyzed. The pitch angle and TEF angle were controlled respectively based on x-LMS, and a compound control method of active load alleviation was proposed by combining the individual pitch control and TEF control, of which, the control effects were subsequently analyzed under different wind conditions. Results show that the model established can effectively simulate the unsteady aerodynamic characteristics of the smart blade wind turbine. The control method proposed can mitigate the fluctuation of high-frequency and low-frequency flapwise root moment and can significantly reduce the fatigue load of blades, thus achieving safety operation of the wind turbine.
引文
[1] NG B F,PALACIOS R,KERRIGAN E C,et al.Aerodynamic load control in horizontal axis wind turbines with combined aeroelastic tailoring and trailing-edge flaps[J].Wind Energy,2016,19(2):243-263.
    [2] BARLAS T K,van KUIK G A M.Review of state of the art in smart rotor control research for wind turbines[J].Progress in Aerospace Sciences,2010,46(1):1-27.
    [3] de FREITAS P R L U,GON?ALVES B P F.A revised theoretical analysis of aerodynamic optimization of horizontal-axis wind turbines based on BEM theory[J].Renewable Energy,2017,105:625-636.
    [4] GAERTNER E M.Modeling dynamic stall for a free vortex wake model of a floating offshore wind turbine[D].Amherst,US:University of Massachusetts Amherst,2014.
    [5] CHEN Hongsheng,JEN T C.A passive control method of HAWT blade cyclical aerodynamic load induced by wind shear[C]//Proceedings of the 8th International Conference on Mechanical and Intelligent Manufacturing Technologies.Cape Town,South Africa:IEEE,2017.
    [6] 鲁效平,顾海港,林勇刚,等.基于独立变桨距技术的风力发电机组载荷控制研究[J].太阳能学报,2011,32(11):1591-1598.LU Xiaoping,GU Haigang,LIN Yonggang,et al.Research on the load control of wind turbines based on individual pitch technology[J].Acta Energiae Solaris Sinica,2011,32(11):1591-1598.
    [7] BERNHAMMER L O,van KUIK G A M,de BREUKER R.Fatigue and extreme load reduction of wind turbine components using smart rotors[J].Journal of Wind Engineering and Industrial Aerodynamics,2016,154:84-95.
    [8] CASTAIGNET D,COUCHMAN I,POULSEN N K,et al.Frequency-weighted model predictive control of trailing edge flaps on a wind turbine blade[J].IEEE Transactions on Control Systems Technology,2013,21(4):1105-1116.
    [9] JONKMAN J,BUTTERFIELD S,MUSIAL W,et al.Definition of a 5-MW reference wind turbine for offshore system development[R].Golden,Colorado,USA:National Renewable Energy Laboratory,2009.
    [10] JONKMAN B J,KILCHER L.Turbsim user's guide:version 1.06.00[R].USA:National Renewable Energy Laboratory,2012.
    [11] 张文广,李腾飞,刘吉臻,等.尾缘襟翼结构参数对大型风机气动性能影响的仿真研究[J].可再生能源,2016,34(12):1826-1833.ZHANG Wenguang,LI Tengfei,LIU Jizhen,et al.Simulation study on trailing edge flaps' structure parameters affecting aerodynamic performance of large wind turbines[J].Renewable Energy Resources,2016,34(12):1826-1833.
    [12] BERGAMI L,GAUNAA M.Analysis of aeroelastic loads and their contributions to fatigue damage[J].Journal of Physics:Conference Series,2014,555(1):012007.
    [13] 张文广,白雪剑.智能叶片风力机建模及多目标尾缘襟翼控制[J].动力工程学报,2018,38(4):321-328.ZHANG Wenguang,BAI Xuejian.Modeling of a smart blade wind turbine and its multi-target control with trailing edge flaps[J].Journal of Chinese Society of Power Engineering,2018,38(4):321-328.
    [14] ABBOTT I H,von DOENHOFF A E.Theory of wing sections:including a summary of airfoil data[M].New York,USA:Dover Publications,1959.
    [15] 廖明夫.风力机设计理论与结构动力学[M].西安:西北工业大学出版社,2014.
    [16] HANSEN M O L.Aerodynamics of wind turbines[M].3rd ed.London,US:Routledge,2015.
    [17] HAYKIN S.自适应滤波器原理[M].郑宝玉,译.2版.北京:电子工业出版社,2016.
    [18] 毛剑琴,李琳,张臻,等.智能结构动力学与控制[M].北京:科学出版社,2013.
    [19] BURGESS J C.Active adaptive sound control in a duct:a computer simulation[J].The Journal of the Acoustical Society of America,1981,70(3):715-726.
    [20] van ENGELEN T G,van der HOOFT E L.Individual pitch control inventory[R].Delft:Technical University of Delft,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700