用户名: 密码: 验证码:
石墨烯在锂离子电池和超级电容器中的应用展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application prospect of graphene in Li-ion battery and supercapacitor
  • 作者:崔超婕 ; 田佳瑞 ; 杨周飞 ; 金鹰 ; 董卓娅 ; 谢青 ; 张刚 ; 叶珍珍 ; 王瑾 ; 刘莎 ; 骞伟中
  • 英文作者:CUI Chao-jie;TIAN Jia-rui;YANG Zhou-fei;JIN Ying;DONG Zhuo-ya;XIE Qing;ZHANG Gang;YE Zhen-zhen;WANG Jin;LIU Sha;QIAN Wei-zhong;Department of Chemical Engineering,Tsinghua University;Jiangsu Zhongtian Technology Co., Ltd.;
  • 关键词:石墨烯 ; 锂离子电池 ; 超级电容器 ; 双电层电容器 ; 能量转化与储存
  • 英文关键词:graphene;;Li-ion battery;;supercapacitor;;electrical double-layer capacitor;;energy conversion and storage
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:清华大学化学工程系;江苏中天科技股份有限公司;
  • 出版日期:2019-05-15 10:52
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.432
  • 基金:国家科技部重点研发计划(2016YFA0200102)
  • 语种:中文;
  • 页:CLGC201905002
  • 页数:9
  • CN:05
  • ISSN:11-1800/TB
  • 分类号:5-13
摘要
由于独特的结构和优异的性质,石墨烯在锂离子电池和超级电容器领域展现出潜在的应用前景,受到了科学界和产业界的广泛关注,涌现出大量的研究工作。就石墨烯在储能领域的应用进行了分析、同时对未来发展趋势进行了预判,以期加强对石墨烯结构-性能关系的理解。首先就石墨烯在锂离子电池的正极和负极中的应用,以及石墨烯在双电层电容器和赝电容电容器中的应用进行了介绍,其次,针对石墨烯应用于双电层电容器中存在的挑战进行了论述,同时针对性地提出了应用于双电层电容器的石墨烯结构。最后,提出了实现石墨烯基双电层电容器的商业化应用的"三步走路线"。
        Graphene, as a rising star in materials science, is intensively studied in Li-ion batteries and supercapacitors, owing to its unique structure and excellent properties. The research status of the application of graphene in energy storage field was disscussed and the future development trend was predicted, and therefore to enhance the understanding of the structure-performance relationship of graphene and also the application of graphene in this field. Firstly, the application of graphene in cathode and anode of Li-ion battery, and the application of graphene in electrical double-layer capacitor and pseudo-capacitor were introduced. Secondly, the challenges of graphene in electrical double-layer capacitor were discussed and the ideal structure of graphene applied to electrical double-layer capacitor was proposed. Finally, the "three steps" to realize the commercial application of graphene-based electrical double-layer capacitor were put forward.
引文
[1] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
    [2] GEIM A K.Graphene:status and prospects[J].Science,2009,324(5934):1530-1534.
    [3] GEIM A K.Nobel lecture:random walk to graphene[J].Rev Mod Phys,2011,83(3):851-862.
    [4] NOVOSELOV K S,FAL′KO V I,COLOMBO L,et al.A road-map for graphene[J].Nature,2012,490(7419):192-200.
    [5] MAYOROV A S,GORBACHEV R V,MOROZOV S V,et al.Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J].Nano Letters,2011,11(6):2396-2399.
    [6] MOROZOV S V,NOVOSELOV K S,KATSNELSON M I,et al.Giant intrinsic carrier mobilities in graphene and its bilayer[J].Physical Review Letters,2008,100(1):016602.
    [7] BALANDIN A A.Thermal properties of graphene and nanostruc-tured carbon materials[J].Nature Materials,2011,10(8):569-581.
    [8] LEE C,WEI X,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
    [9] LIU F,MING P,LI J.Ab initio calculation of ideal strength and phonon instability of graphene under tension[J].Phys Rev B,2007,76(6):471-478.
    [10] ZHANG Q,HUANG J Q,QIAN W Z,et al.The road for nanomaterials industry:a review of carbon nanotube production,post-treatment,and bulk applications for composites and energy storage[J].Small,2013,9(8):1237-1265.
    [11] SUN X,LI J,SHI C,et al.Enhanced electrochemical performance of LiFePO4 cathode with in-situ chemical vapor deposition synthesized carbon nanotubes as conductor[J].Jou-rnal of Power Sources,2012,220:264-268.
    [12] LIU X Y,PENG H J,ZHANG Q,et al.Hierarchical carbon nanotube/carbon black scaffolds as short- and long-range elec-tron pathways with superior Li-ion storage performance[J].ACS Sustainable Chemistry & Engineering,2013,2(2):200-206.
    [13] LEE E,SALGADO R A,LEE B,et al.Design of lithium cobalt oxide electrodes with high thermal conductivity and electroch-emical performance using carbon nanotubes and diamond parti-cles[J].Carbon,2018,129:702-710.
    [14] NGUYEN T T D,DIMESSO L,CHERKASHININ G,et al.Synthesis and characterization of LiMn1-xFexPO4/carbon nanotubes composites as cathodes for Li-ion batteries[J].Ion-ics,2013,19(9):1229-1240.
    [15] GAO L,JIN Y,LIU X,et al.A rationally assembled graphene nanoribbon/graphene framework for high volumetric energy and power density Li-ion batteries[J].Nanoscale,2018,10(16):7676-7684.
    [16] WEI X,GUAN Y,ZHENG X,et al.Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent[J].Applied Surface Science,2018,440:748-754.
    [17] CAI H,HAN K,JIANG H,et al.Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries[J].Journal of Physics and Chemistry of Solids,2017,109:9-17.
    [18] NIU S,LV W,ZHANG C,et al.One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimension-ally interconnected structure for lithium-sulfur batteries[J].Journal of Power Sources,2015,295:182-189.
    [19] WANG Q,YAN J,FAN Z.Carbon materials for high volum-etric performance supercapacitors:design,progress,challenges and opportunities[J].Energy & Environmental Science,2016,9(3):729-762.
    [20] ZHU C,HAN Y J,DUOSS E B,et al.Highly compressible 3D periodic graphene aerogel microlattices[J].Nature Communica-tions,2015,6:6962.
    [21] TENG Y,ZHAO H,ZHANG Z,et al.MoS2 nanosheets verti-cally grown on graphene sheets for lithium-ion battery anodes[J].ACS Nano,2016,10(9):8526-8535.
    [22] SHI L,ZHAO T.Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries[J].Journal of Materials Chemistry A,2017,5(8):3735-3758.
    [23] ZHANG X,CHENG X,ZHANG Q.Nanostructured energy materials for electrochemical energy conversion and storage:a review[J].Journal of Energy Chemistry,2016,25(6):967-984.
    [24] JI L,MEDURI P,AGUBRA V,et al.Graphene-based nanoco-mposites for energy storage[J].Advanced Energy Materials,2016,6(16):1502159.
    [25] SATHISH M,TOMAI T,HONMA I.Graphene anchored with Fe3O4 nanoparticles as anode for enhanced Li-ion storage[J].Journal of Power Sources,2012,217:85-91.
    [26] POIZOT P,LARUELLE S,GRUGEON S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithiumion batteries[J].Nature,2000,407(6803):496-499.
    [27] LIN D,LIU Y,CUI Y.Reviving the lithium metal anode for high-energy batteries[J].Nat Nanotechnol,2017,12(3):194-206.
    [28] DENG D.Li-ion batteries:basics,progress,and challenges[J].Energy Science & Engineering,2015,3(5):385-418.
    [29] ZHANG L L,ZHAO X S.Carbon-based materials as superca-pacitor electrodes[J].Chem Soc Rev,2009,38(9):2520-2531.
    [30] FRACKOWIAK E,DELPEUX S,JUREWICZ K,et al.Enh-anced capacitance of carbon nanotubes through chemical activ-ation[J].Chemical Physics Letters,2002,361(1/2):35-41.
    [31] ZHU Y,MURALI S,STOLLER M D,et al.Carbon-based supercapacitors produced by activation of graphene[J].Science,2011,332(6037):1537-1541.
    [32] YU A,ROES I,DAVIES A,et al.Ultrathin,transparent,and flexible graphene films for supercapacitor application[J].Applied Physics Letters,2010,96(25):253105-1-253105-3.
    [33] ZHANG L,ZHANG F,YANG X,et al.Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J].Sci Rep,2013,3:1408.
    [34] DONG X C,XU H,WANG X W,et al.3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzym-eless glucose detection[J].ACS Nano,2012,6(4):3206-3213.
    [35] HE Y,CHEN W,LI X,et al.Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J].ACS Nano,2013,7(1):174-182.
    [36] LEE J W,HALL A S,KIM J D,et al.A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability[J].Cheminform,2012,43(24):1158-1164.
    [37] ZHANG L L,ZHAO S,TIAN X N,et al.Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes[J].Langmuir,2010,26(22):17624-17628.
    [38] REN W,CHENG H M.The global growth of graphene[J].Nat Nanotechnol,2014,9(10):726-730.
    [39] KAHNG Y H,LEE S,PARK W,et al.Thermal stability of multilayer graphene films synthesized by chemical vapor depos-ition and stained by metallic impurities[J].Nanotechnology,2012,23(7):075702.
    [40] LI Y,ZHOU W,WANG H,et al.An oxygen reduction elect-rocatalyst based on carbon nanotube-graphene complexes[J].Nat Nanotechnol,2012,7(6):394-400.
    [41] CHEN D,TANG L,LI J.Graphene-based materials in electro-chemistry[J].Chem Soc Rev,2010,39(8):3157-3180.
    [42] AMBROSI A,CHEE S Y,KHEZRI B,et al.Metallic impur-ities in graphenes prepared from graphite can dramatically infl-uence their properties[J].Angew Chem Int Ed Engl,2012,51(2):500-503.
    [43] LUO J,JANG H D,HUANG J.Effect of sheet morphology on the scalability of graphene-based ultracapacitors[J].ACS Nano,2013,7(2):1464-1471.
    [44] TAMAILARASAN P,RAMAPRABHU S.Carbon nanotubes-graphene-solidlike ionic liquid layer-based hybrid electrode material for high performance supercapacitor[J].The Journal of Physical Chemistry C,2012,116(27):14179-14187.
    [45] ZHAO M Q,ZHANG Q,HUANG J Q,et al.Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J].Nature Communications,2014,5:3410.
    [46] DU F,YU D,DAI L,et al.Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capa-citance[J].Chemistry of Materials,2011,23(21):4810-4816.
    [47] YANG X,CHENG C,WANG Y,et al.Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J].Science,2013,341(6145):534-537.
    [48] GUO F,JIANG Y,XU Z,et al.Highly stretchable carbon aerogels[J].Nat Commun,2018,9(1):881.
    [49] SUN H,XU Z,GAO C.Multifunctional,ultra-flyweight,syn-ergistically assembled carbon aerogels[J].Adv Mater,2013,25(18):2554-2560.
    [50] CHEN H,QIAN W,XIE Q,et al.Graphene-carbon nanotube hybrids as robust,rapid,reversible adsorbents for organics[J].Carbon,2017,116:409-414.
    [51] LI H,TAO Y,ZHENG X,et al.Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J].Energy & Environmental Science,2016,9(10):3135-3142.
    [52] TANG J,YUAN P,CAI C,et al.Combining nature-inspired,graphene-wrapped flexible electrodes with nanocomposite poly-mer electrolyte for asymmetric capacitive energy storage[J].Advanced Energy Materials,2016:1600813-1-1600813-11.
    [53] WANG Q,YAN J,DONG Z,et al.Densely stacked bubble-pillared graphene blocks for high volumetric performance supe-rcapacitors[J].Energy Storage Materials,2015,1:42-50.
    [54] CHEN H,XU H,WANG S,et al.Ultrafast all-climate alumi-num-graphene battery with quarter-million cycle life[J].Science Advances,2017,3(12):7233.
    [55] XU Y,LIN Z,ZHONG X,et al.Holey graphene frameworks for highly efficient capacitive energy storage[J].Nat Commun,2014,5:4554.
    [56] CUI C J,QIAN W Z,YU Y T,et al.Highly electroconductive mesoporous graphene nanofibers and their capacitance perfor-mance at 4V[J].Journal of the American Chemical Society,2014,136(6):2256-2259.
    [57] TIAN J,CUI C,ZHENG C,et al.Mesoporous tubular graph-ene electrode for high performance supercapacitor[J].Chinese Chemical Letters,2018,29(4):599-602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700