用户名: 密码: 验证码:
Role of Cu element in biomedical metal alloy design
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Role of Cu element in biomedical metal alloy design
  • 作者:Er-Lin ; Zhang ; Shan ; Fu ; Ruo-Xian ; Wang ; Hai-Xia ; Li ; Ying ; Liu ; Zhi-Qiang ; Ma ; Guang-Kun ; Liu ; Chen-Shun ; Zhu ; Gao-Wu ; Qin ; Da-Fu ; Chen
  • 英文作者:Er-Lin Zhang;Shan Fu;Ruo-Xian Wang;Hai-Xia Li;Ying Liu;Zhi-Qiang Ma;Guang-Kun Liu;Chen-Shun Zhu;Gao-Wu Qin;Da-Fu Chen;School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University;Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital;
  • 英文关键词:Cu;;Biomedical metal alloy;;Corrosion resistance;;Antibacterial property;;Biological property
  • 中文刊名:XYJS
  • 英文刊名:稀有金属(英文版)
  • 机构:School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University;Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital;
  • 出版日期:2019-06-15
  • 出版单位:Rare Metals
  • 年:2019
  • 期:v.38
  • 基金:financially supported by the National Natural Science Foundation of China (Nos.81071262 and 31470930);; the Beijing Municipal Natural Science Foundation (No.7161001)
  • 语种:英文;
  • 页:XYJS201906002
  • 页数:19
  • CN:06
  • ISSN:11-2112/TF
  • 分类号:4-22
摘要
Biomedical metals are widely used as implant materials in the human or animal body to repair organs and restore function, such as heart valves, meninges, peritoneum and artificial organs.Alloying element affects the microstructure, mechanical property, corrosion resistance and wear resistance, but also influences the antibacterial and biological activity.Recently, antibacterial metal alloys have shown great potential as a new kind of biomedical materials, in which Cu has been widely used as antibacterial agent element.In addition, biodegradable metal alloys, including magnesium alloy and zinc alloy, also have attracted much attention worldwide.Cu was also used as alloying element to adjust the degradation rate.Thus, the role of Cu in the alloy design will be very important for the development of new alloy.In this paper, we summarized the recent research results on the Cu-containing metal alloy for biomedical application and hoped that this review would give more suggestions for the further development of biomedical metal alloy.
        Biomedical metals are widely used as implant materials in the human or animal body to repair organs and restore function, such as heart valves, meninges, peritoneum and artificial organs.Alloying element affects the microstructure, mechanical property, corrosion resistance and wear resistance, but also influences the antibacterial and biological activity.Recently, antibacterial metal alloys have shown great potential as a new kind of biomedical materials, in which Cu has been widely used as antibacterial agent element.In addition, biodegradable metal alloys, including magnesium alloy and zinc alloy, also have attracted much attention worldwide.Cu was also used as alloying element to adjust the degradation rate.Thus, the role of Cu in the alloy design will be very important for the development of new alloy.In this paper, we summarized the recent research results on the Cu-containing metal alloy for biomedical application and hoped that this review would give more suggestions for the further development of biomedical metal alloy.
引文
[1]Yu WJ.Study on microstructure and properties of Ti-Nb-Zr alloys.Beijing:General Research Institute for Nonferrous Metals;2012.3.
    [2]Zipper JA,Tatum HJ,Pastene L,Medel M,Rivera M.Metallic copper as an intrauterine contraceptive adjunct to the‘‘T’’device.Am J Obstet Gynecol.1969;105(8):1274.
    [3]Chen WJ,Wu YY,Shen JN.Effect of copper and bronze addition on corrosion resistance of alloyed 316L stainless steel cladded on plain carbon steel by powder metallurgy.Mater Sci Technol.2004;20(2):217(English version).
    [4]Chen C,Feng X,Shen Y.Microstructure and mechanical properties of Ti-Cu amorphous coating synthesized on pure Cu substrate by mechanical alloying method.Rare Met.2018.https://doi.org/10.1007/s12598-018-1115-x.
    [5]Scheiber IF,Mercer JF,Dringen R.Metabolism and functions of copper in brain.Prog Neurobiol.2014;116(5):33.
    [6]Hart EB,Steenbock H,Waddell J,Elvehjem CA.Iron in nutrition Ⅶ.Copper as a supplement to iron for hemoglobin building in the rat.Nutr Rev.2010;45(8):181.
    [7]Barbucci R,Magnani A,Lamponi S,Mitola S,Ziche M,Morbidelli L,Bussolino F.Cu(Ⅱ)and Zn(Ⅱ)complexes with hyaluronic acid and its sulphated derivative.Effect on the motility of vascular endothelial cells.J Inorg Biochem.2000;81(4):229.
    [8]Wu C,Zhou Y,Xu M,Han P,Chen L,Chang J,Xiao Y.Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity,osteostimulation and antibacterial activity.Biomaterials.2013;34(2):422.
    [9]Shi F,Liu Y,Zhi W,Xiao D,Li H,Duan K,Qu S,Weng J.The synergistic effect of micro/nano-structured and Cu2+-doped hydroxyapatite particles to promote osteoblast viability and antibacterial activity.Biomed Mater.2017;12(3):035006.
    [10]Liu R,Tang Y,Zeng L,Zhao Y,Ma Z,Sun Z,Xiang L,Ren L,Yang K.In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application.Dent Mater.2018;34(8):1112.
    [11]Borkow G,Gabbay J,Dardik R,Eidelman AI,Lavie Y,Grunfeld Y,Ikher S,Huszar M,Zatcoff RC,Marikovsky M.Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings.Wound Repair Regen.2010;18(2):266.
    [12]Takeuchi K,Mori A,Yamamoto S,Sonoda T,Nagata Y.Effect of the secretions from the IUD-bearing uterus on peri-implantation mouse embryos.Contraception.1990;41(6):655.
    [13]Liu HF,Liu ZL,Xie CS,Yu J,Zhu CH.The antifertility effectiveness of copper/low-density polyethylene nanocomposite and its influence on the endometrial environment in rats.Contraception.2007;75(2):157.
    [14]Strause L,Saltman P,Glowacki J.The effect of deficiencies of manganese and copper on osteoinduction and on resorption of bone particles in rats.Calcif Tissue Int.1987;41(3):145.
    [15]Gargiulo N,Cusano AM,Causa F,Caputo D,Netti PA.Silver-containing mesoporous bioactive glass with improved antibacterial properties.J Mater Sci-Mater Med.2013;24(9):2129.
    [16]Lin HM,Zhang J,Qu FY,Jiang JJ,Jiang PP.In vitro hydroxyapatite-forming ability and antimicrobial properties of mesoporous bioactive glasses doped with Ti/Ag.J Nanomater.2013;2013(6397):24.
    [17]Zhu YF,Li XL,Yang JH,Wang SL,Gao H,Hanagata N.Composition-structure-property relationships of the CaO-Mx Oy-SiO2-P2O5(M=Zr,Mg,Sr)mesoporous bioactive glass(MBG)scaffolds.J Mater Chem.2011;21(25):9208-18.
    [18]Zhang JC,Li YP,Yang KN,Hao XH.Effects of Cu2+ and Cu+ on the proliferation,differentiation and calcification of primary mouse osteoblasts in vitro.Chin J Inorgan Chem.2010;26(12):2251.
    [19]Wu C,Zhou Y,Fan W,Han P,Chang J,Yuen J,Zhang M,Xiao Y.Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering.Biomaterials.2012;33(7):2076.
    [20]Klevay LM.Copper in legumes may lower heart disease risk.Arch Intern Med.2002;162(15):1780.
    [21]Hu GF.Copper stimulates proliferation of human endothelial cells under culture.J Cell Biochem.2015;69(3):326.
    [22]Giavaresi G,Torricelli P,Fornasari PM,Giardino R,Barbucci R,Leone G.Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions.Biomaterials.2005;26(16):3001.
    [23]Rahman ML,Sarjadi MS,Arshad SE,Yusoff MM,Sarkar SM,Musta B.Kenaf cellulose-based poly(amidoxime)ligand for adsorption of rare earth ions.Rare Met.2018.https://doi.org/10.1007/s12598-018-1061-7.
    [24]Sen CK,Khanna S,Venojarvi M,Trikha P,Ellison EC,Hunt TK,Roy S.Copper-induced vascular endothelial growth factor expression and wound healing.Am J Physiol Heart Circ Physiol.2002;282(5):H1821.
    [25]Linder MC,Hazeghazam M.Copper biochemistry and molecular biology.Am J Clin Nutr.1996;63(5):797S.
    [26]Winge DR,Mehra RK.Host defenses against copper toxicity.Int Rev Exp Pathol.1990;31:47.
    [27]Aggett PJ.An overview of the metabolism of copper.Eur JMed Res.1999;4(6):214.
    [28]Organization WH.Trace elements in human nutrition and health.Indian J Med Res.1997;105(5):246.
    [29]Trumbo P,Yates AA,Schlicker S,Poos M.Dietary reference intakes:vitamin A,vitamin K,arsenic,boron,chromium,copper,iodine,iron,manganese,molybdenum,nickel,silicon,vanadium,and zinc.J Am Diet Assoc.2001;101(3):294.
    [30]Linder MC,Hazegh-Azam M.Copper biochemistry and molecular biology.Am J Clin Nutr.1996;63(5):797S.
    [31]Scheiber I,Dringen R,Mercer JFB.Copper:effects of deficiency and overload.Metal Ions Life Sci.2013;13(13):359.
    [32]Lüthen F,Bergemann C,Bulnheim U,Prinz C,Neumann HG,Podbielski A,Bader R,Rychly J.A dual role of copper on the surface of bone implants.Mater Sci Forum.2010;638-642:600.
    [33]Ning C,Wang X,Li L,Zhu Y,Li M,Yu P,Zhou L,Zhou Z,Chen J,Tan G.Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells:implications for a new antibacterial mechanism.Chem Res Toxicol.2015;28(9):1815.
    [34]Burghardt I,Lüthen F,Prinz C,Kreikemeyer B,Zietz C,Neumann HG,Rychly J.A dual function of copper in designing regenerative implants.Biomaterials.2015;44(44):36.
    [35]Klinkajon W,Supaphol P.Novel copper(Ⅱ)alginate hydrogels and their potential for use as anti-bacterial wound dressings.Biomed Mater.2014;9(4):045008.
    [36]Wu J,Wang L,He J,Zhu C.In vitro cytotoxicity of Cu2+,Zn2+,Ag+and their mixtures on primary human endometrial epithelial cells.Contraception.2012;85(5):509.
    [37]Stout JE,Yu VL.Experiences of the first 16 hospitals using copper-silver ionization for Legionella control:implications for the evaluation of other disinfection modalities.Infect Control Hosp Epidemiol.2003;24(8):563.
    [38]Michels HT,Anderson DG.Antimicrobial regulatory efficacy testing of solid copper alloy surfaces in the USA.Metal Ions Biol Med.2008;10(2):185.
    [39]Wang XL,Liu S,Li M,Yu P,Chu X,Li L,Tan G,Wang Y,Chen X,Zhang Y.The synergistic antibacterial activity and mechanism of multicomponent metal ions-containing aqueous solutions against Staphylococcus aureus.J Inorg Biochem.2016;163:214.
    [40]Zevenhuizen LPTM,Dolfing J,Eshuis EJ,Scholtenkoerselman IJ.Inhibitory effects of copper on bacteria related to the free ion concentration.Microb Ecol.1979;5(2):139.
    [41]Fan WD,Yang QW,Guo B,Bo L,Zhang SG.Crystallization mechanism of glass-ceramics prepared from stainless steel slag.Rare Met.2018;37(5):413.
    [42]Ye D,Li J,Wang J,Su J,Zhao K.Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel.Mater Des.2012;41:16-22.
    [43]Yongxia W,Dasheng L.Study on copper-containing antimicrobial stainless steel materials.J Yancheng Inst Technol Nat Sci Ed.2017;30(1):1.
    [44]Yamashita M,Miyuki H,Matsuda Y,Nagano H,Misawa T.The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century.Cheminform.1994;25(19):283.
    [45]Thompson SW,Krauss G.Copper precipitation during continuous cooling and isothermal aging of a710-type steels.Metall Mater Trans A.1996;27(6):1573.
    [46]Panwar S,Goel DB,Pandey OP,Prasad KS.Aging of a copper bearing HSLA-100 steel.Bull Mater Sci.2003;26(4):441.
    [47]Gang L,Jicheng S,Rumeng W.Effect of copper on properties of ferritic antibacterial stainless steel.Funct Mater.2011;42(S3):549.
    [48]Feng H,Jiang HC,Rong LJ,Wang L.Effect of cu content on corrosion resistance of a high strength low alloy weathering steel.Corros Sci Prot Technol.2011;23(4):318.
    [49]Sun F,Li XG,Zhang F,Cheng X,Zhou C,Wu NC,Yin Y,Zhao J.Corrosion mechanism of corrosion-resistant steel developed for bottom plate of cargo oil tanks.Acta Metall Sin Engl Lett.2016;26(3):257.
    [50]Hao X,Dong J,Wei J,Etim ⅡN,Ke W.Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank.Corros Sci.2017;121:84.
    [51]Yang K,Dong JS,Chen SH,Li MQ.Process and corrosion resistance of stainless steel containing Cu.J Mater Res.2006;20(5):523.
    [52]Trethewey KR,Paton M.Electrochemical impedance behaviour of type 304L stainless steel under tensile loading.Mater Lett.2004;58(27-28):3381.
    [53]Simmons JW.Overview:high-nitrogen alloying of stainless steels.Mater Sci Eng,A.1996;207(2):159.
    [54]Zhang A,Li L,Qiao J.Microstructure and properties of antibacterial martensite stainless steel containing copper.Metal Funct Mater.2007;14(2):14.
    [55]Bahmani-Oskooee M,Nedjad SH,Samadi A,Kozeschnik E.Cu-bearing,martensitic stainless steels for applications in biological environments.Mater Des.2017;130:442.
    [56]Hong IT,Koo CH.Antibacterial properties,corrosion resistance and mechanical properties of Cu-modified SUS 304stainless steel.Mater Sci Eng,A.2005;393(1):213.
    [57]Sen I,Amankwah E,Kumar NS,Fleury E,Oh-Ishi K,Hono K,Ramamurty UJMS.Microstructure and mechanical properties of annealed SUS 304H austenitic stainless steel with copper.Mater Sci Eng.2011;528(13):4491.
    [58]Xi T,Shahzad MB,Xu D,Zhao J,Yang C,Qi M,Yang K.Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel:a comprehensive cross-correlation study.Mater Sci Eng,A.2016;675:243.
    [59]Ye D,Li J,Rong LY,Long YQ,Jie SU,Cao JC,Tao JM,Zhao KY.The microstructure and properties of super martensitic stainless steel microalloyed with tungsten and copper.Mater Process Rep.2012;27(1):88.
    [60]Gollapudi S,Sarkar R,Babu UC,Sankarasubramanian R,Nandy TK,Gogia AK.Microstructure and mechanical properties of a copper containing three phase titanium alloy.Mater Sci Eng,A.2011;528(22-23):6794.
    [61]Chi CY,Yu HY,Dong JX,Liu WQ,Cheng SC,Liu ZD,Xie XS.The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application.Prog Nat Sci Mater Int.2012;22(3):175.
    [62]Okubo N,Nakamura R,Yamamoto M.Antimicrobial performance and material properties of antibacterial stainless steel‘‘NSSAM series’’.Nisshin Steel Technol News.1998;3(2):25.
    [63]Ren YB,Yang K,Yang HJ,Zhang BC.In vitro biocompatibility of a new high nitrogen nickel free austenitic stainless steel.Key Eng Mater.2007;342:605.
    [64]Ren L,Zhu JM,Nan L,Yang K.Differential scanning calorimetry analysis on Cu precipitation in a high Cu austenitic stainless steel.Mater Des.2011;32(7):3980.
    [65]Ren L,Yang K,Guo L,Chai HW.Preliminary study of anti-infective function of a copper-bearing stainless steel.Mater Sci Eng,C.2012;32(5):1204.
    [66]Ren L,Nan L,Yang K.Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel.Mater Des.2011;32(4):2374.
    [67]Ni HW,Zhang HS,Chen RS,Zhan WT,Huo KF,Zuo ZY.Antibacterial properties and corrosion resistance of AISI420stainless steels implanted by silver and copper ions.Int J Miner Metall Mater.2012;19(4):322.
    [68]Zhu JC.Study on the Properties of Antibacterial Stainless Steel of Cupreous Layer Prepared by Plasma Metallization Technique.Guilin:Guilin University of Electronic Science and Technology;2011.56.
    [69]Shuai P,Yudong Z,Dongfei H,Hui L,Xiaobo Z,Xingfu L,Jing Z.Preparation of Ag-SiO2antibacterial film based on stainless steel by sol-gel method and characterization of structure and properties.J Beijing Univ Sci Technol.2011;33(5):575.
    [70]Weihu Y,Yubao L,Lan W,Anchun M,Jidong L,Lirong M.Preparation of antimicrobial stainless steels at room temperature.Funct Mater.2006;37(3):408.
    [71]Nan L,Liu YQ,Yang WC,Xu H,Li Y,Lu MQ,Yang K.Study on antibacterial properties of copper-containing antibacterial stainless steels.Acta Metall Sin.2007;43(10):1065.
    [72]Yang K,Lu MQ.Antibacterial properties of an austenitic antibacterial stainless steel and its security for human body.J Mater Sci Technol.2007;23(3):333.
    [73]Liu YQ,Nan L,Chen DM,Yang K.Study of a Cu-containing martensitic antibacterial stainless steel.Rare Metal Mater Eng.2008;37(8):1380.
    [74]Chai H,Guo L,Wang X,Fu Y,Guan J,Tan L,Ren L,Yang K.Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo.J Mater Sci-Mater Med.2011;22(11):2525.
    [75]Sun D,Xu D,Yang C,Shahzad MB,Sun Z,Xia J,Zhao J,Gu T,Yang K,Wang G.An investigation of the antibacterial ability and cytotoxicity of a novel Cu-bearing 317L stainless steel.Sci Rep.2016;6:29244.
    [76]Nan L,Cheng JL,Yang K.Antibacterial behavior of a Cu-bearing type 200 stainless steel.J Mater Sci Technol.2012;28(11):1067.
    [77]Nan L,Yang K.Effect of Cu addition on antibacterial property of type 200 stainless steel.Mater Technol.2016;31(1):44.
    [78]Li M,Nan L,Xu D,Ren G,Yang K.Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water.J Mater Sci Technol.2015;31(3):243.
    [79]Nan L,Ren G,Wang D,Yang K.Antibacterial performance of Cu-bearing stainless steel against Staphylococcus aureus and Pseudomonas aeruginosa in whole milk.J Mater Sci Technol.2016;32(5):445.
    [80]Wang S,Yang C,Shen M,Yang K.Effect of aging on antibacterial performance of Cu-bearing martensitic stainless steel.Mater Technol.2014;29(5):257.
    [81]Wang S,Yang CG,Xu D.Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel.Acta Metall.2014;50:1453.
    [82]Wang S,Yang K,Shen M,Yang C.Effect of Cu content on antibacterial activity of 17-4 PH stainless steel.Mater Technol.2015;30(Sup6):B115.
    [83]Lou Y,Lin L,Xu D,Zhao S,Yang C,Liu J,Zhao Y,Gu T,Yang K.Antibacterial ability of a novel Cu-bearing 2205duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater.Int Biodeterior Biodegradation.2016;110:199.
    [84]Nan L,Yang WC,Liu YQ,Xu H,Li Y,Lu MQ,Yang K.Antibacterial mechanism of copper-bearing antibacterial stainless steel against E.coli.Mater Sci Technol.2008;24(2):197(English version).
    [85]Xiang HL,Fan JC,Liu D,Gu X.Antibacterial aging treatment on the microstructure and mechanical properties of Cu containing duplex stainless steel-Ⅱ.The influence of corrosion and antibacterial properties.J Metal.2012;48(9):1089.
    [86]Xia J,Yang C,Xu D,Sun D,Nan L,Sun Z,Li Q,Gu T,Yang K.Laboratory investigation of the microbiologically influenced corrosion(MIC)resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm.Biofouling.2015;31(6):481.
    [87]Dong H,Chen S.Technology innovations on high quality special steel products.Baosteel Tech Res.2010;2010(s1):87.
    [88]Ren L,Wong HM,Yan CH,Yeung KW,Yang K.Osteogenic ability of Cu-bearing stainless steel.J Biomed Mater Res BAppl Biomater.2015;103(7):1433.
    [89]Ren L,Xu L,Feng J,Zhang Y,Yang K.In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis.J Mater SciMater Med.2012;23(5):1235.
    [90]Zhao J,Ren L,Zhang B,Cao Z,Yang K.In vitro study on infectious ureteral encrustation resistance of Cu-bearing stainless steel.Mater Sci Technol.2017;33(12):1604.
    [91]Zhao J,Ren L,Liu M,Xi T,Zhang B,Yang K.Anti-fibrotic function of Cu-bearing stainless steel for reducing recurrence of urethral stricture after stent implantation.J Biomed Mater Res B Appl Biomater.2018;106(5):2019.
    [92]Noort RV.Titanium:the implant material of today.J Mater Sci.1987;22(11):3801.
    [93]Fengjuan Z,Ying S,Fuping W.Research status of surface activation of medical titanium alloys.Metal Heat Treat.2009;34(2):106.
    [94]Wu YF,He L,Guo W.Research and application of medical titanium alloys.Prog Titan Ind.2015;3(1):1.
    [95]Kikuchi M,Takada Y,Kiyosue S,Yoda M,Woldu M,Cai Z,Okuno O,Okabe T.Mechanical properties and microstructures of cast Ti-Cu alloys.Dent Mater.2003;19(3):174.
    [96]Murray JL.The Cu-Ti(copper-titanium)system.Bull Alloy Phase Diagr.1983;4(1):81.
    [97]Schuyler DR.Investment casting of low-melting titanium alloys.Vac Metall.1977;6:475.
    [98]Okuno O,Shimizu A,Miura I.Fundamental study on titanium alloys for dental casting.J Jpn Soc Dent Mater Devices.1985;4:708.
    [99]Bomberger H.Low melting hypereutectoid titanium-copper alloys.In:Titanium‘80,Science and Technology:Proceedings of the Fourth International Conference on Titanium,Kyoto;1980,10.
    [100]Gerhard W,Boyer RR,Collings EW.Materials Properties Handbook:Titanium Alloys.Ohio:The Materials Information Society;1993.195.
    [101]Holden FC,Watts AA,Ogden HR,Jaffee RI.Heat treatment and mechanical properties of Ti-Cu alloys.J Iron Steel Res.1955;7(1):117.
    [102]Kikuchi M,Takada Y,Kiyosue S,Yoda M,Woldu M,Cai Z,Okuno O,Okabe T.Grindability of cast Ti-Cu alloys.Dent Mater.2003;19(5):375.
    [103]Takahashi M,Kikuchi M,Takada Y,Okuno O.Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys.Dent Mater J.2002;21(3):270.
    [104]Zhang XP,Yu SR,Xia LJ,He ZM.The present status of Ti and Ti alloys in dentistry.Rare Metal Mater Eng.2002;31(4):246.
    [105]Takada Y,Nakajima H,Okuno O,Okabe T.Microstructure and corrosion behavior of binary titanium alloys with beta-stabilizing elements.Dent Mater J.2001;20(1):34.
    [106]Pina VG,AmigóV,Mu?oz AI.Microstructural,electrochemical and tribo-electrochemical characterization of titanium-copper biomedical alloys.Corros Sci.2016;109:115.
    [107]Bao MM,Liu Y,Wang XY,Yang L,Li SY,Ren J,Qin GW,Zhang EL.Optimization of mechanical properties,biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment.Bioactive Mater.2018;3(1):28.
    [108]Osório WR,Freire CM,Caram R,Garcia A.The role of Cu-based intermetallics on the pitting corrosion behavior of Sn-Cu,Ti-Cu and Al-Cu alloys.Electrochim Acta.2012;77(9):189.
    [109]Osório WR,Cremasco A,Andrade PN,Garcia A,Caram R.Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications.Electrochim Acta.2010;55(3):759.
    [110]Gu JL,Shao Y,Zhao SF,Lu SY,Yang GN,Chen SQ,Yao KF.Effects of Cu addition on the glass forming ability and corrosion resistance of Ti-Zr-Be-Ni alloys.J Alloy Compd.2017;725:573.
    [111]Zhang EL,Wang XY,Chen M,Hou B.Effect of the existing form of Cu element on the mechanical properties,bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application.Mater Sci Eng,C.2016;69:1210.
    [112]Ren L,Ma Z,Li M,Zhang Y,Liu W,Liao Z,Yang K.Antibacterial properties of Ti-6Al-4V-x Cu alloys.J Mater Sci Technol.2014;30(7):699.
    [113]Zhang EL,Li F,Wang H,Liu J,Wang C,Li M,Yang K.Anew antibacterial titanium-copper sintered alloy:preparation and antibacterial property.Mater Sci Eng C Mater Biol Appl.2013;33(7):4280.
    [114]Wang S,Ma Z,Liao ZH,Song J,Yang K,Liu WQ.Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.Mater Sci Eng,C.2015;57:123.
    [115]Li S.Study on preparation,microstructure and antibacterial properties of antibacterial Ti-Cu alloy.Shenyang:Northeastern University;2016.45.
    [116]Zhang EL,Li S,Ren J,Zhang L,Han Y.Effect of extrusion processing on the microstructure,mechanical properties,biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.Mater Sci Eng,C.2016;69:760.
    [117]Shirai T,Tsuchiya H,Shimizu T,Ohtani K,Zen Y,Tomita K.Prevention of pin tract infection with titanium-copper alloys.J Biomed Mater Res B Appl Biomater.2009;91B(1):373.
    [118]Liu J,Li F,Liu C,Wang H,Ren B,Yang K,Zhang EL.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys.Mater Sci Eng,C.2014;35:392.
    [119]Liu R,Memarzadeh K,Chang B,Zhang Y,Ma Z,Allaker RP,Ren L,Yang K.Antibacterial effect of copper bearing titanium alloy(Ti-Cu)against Streptococcus mutans and Porphyromonas gingivalis.Sci Rep.2016;6:29985.
    [120]Bai B,Zhang EL,Liu J,Zhu J.The anti-bacterial activity of titanium-copper sintered alloy against Porphyromonas gingivalis in vitro.Dent Mater J.2016;35(4):659.
    [121]Zhang EL,Li F,Wang H,Liu J,Wang C,Li M,Yang K.Anew antibacterial titanium-copper sintered alloy:preparation and antibacterial property.Mater Sci Eng,C.2013;33(7):4280.
    [122]Liu J,Zhang X,Wang H,Li F,Li M,Yang K,Zhang EL.The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application.Biomed Mater.2014;9(2):025013.
    [123]Ma Z,Ren L,Liu R,Yang K,Zhang Y,Liao Z,Liu W,Qi M,Misra R.Effect of heat treatment on Cu distribution,antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy.J Mater Sci Technol.2015;31(7):723.
    [124]Ma Z,Yao M,Liu R,Yang K,Ren L,Zhang Y,Liao Z,Liu W,Qi M.Study on antibacterial activity and cytocompatibility of Ti-6Al-4V-5Cu alloy.Mater Technol.2015;30(sup6):B80.
    [125]Ma Z,Li M,Liu R,Ren L,Zhang Y,Pan H,Zhao Y,Yang K.In vitro study on an antibacterial Ti-5Cu alloy for medical application.J Mater Sci-Mater Med.2016;27(5):91.
    [126]Liu J,Li F,Liu C,Wang H,Ren B,Yang K,Zhang EL.Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys.Mater Sci Eng C Mater Biol Appl.2014;35(1):392.
    [127]Wang XY,Dong H,Liu J,Qin GW,Zhang EL,Chen DF.In vivo antibacterial property of Ti-Cu sintered alloy implant.Mater Sci Eng,C.2019.https://doi.org/10.1016/j.msec.2019.02.084.
    [128]Zhang EL,Zheng L,Liu J,Bai B,Liu C.Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys.Mater Sci Eng,C.2015;46:148.
    [129]Li Y,Zhang YT,He J,Ma K,Wang MY,Li SY,Deng CF,Zhang EL,Zhao BH.Effects of different copper contents on the adhesion and migration of osteoblasts.Chin J Pract Stomatol.2017;10(6):354.
    [130]Zhang EL,Zhang LL,Liu J,Bai B,Liu C.Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys.Mater Sci Eng,C.2015;46(8):148.
    [131]Zadorozhnyy VY,Shi X,Kozak DS,Wada T,Wang JQ,Kato H,Louzguine-Luzgin DV.Electrochemical behavior and biocompatibility of Ti-Fe-Cu alloy with high strength and ductility.J Alloy Compd.2017;707:291.
    [132]Luo J,Guo S,Lu Y,Xu X,Zhao C,Wu S,Lin J.Cytocompatibility of Cu-bearing Ti6Al4V alloys manufactured by selective laser melting.Mater Charact.2018;143:127.
    [133]Bai B,Zhang EL,Dong H,Liu J.Biocompatibility of antibacterial Ti-Cu sintered alloy:in vivo bone response.J Mater Sci-Mater Med.2015;26(12):265.
    [134]Hao SM.Magnesium alloying and alloy phase diagram.J Mater Metall.2002;1(3):166.
    [135]Chen JX,Peng W,Zhu L,Tan LL,Etim IP,Wang XJ,Yang K.Effect of copper content on the corrosion behaviors and antibacterial properties of binary Mg-Cu alloys.Mater Technol.2018;33(2):1.
    [136]Wu CB,Wang QD,Zhao P.Influence of Fe,Ni and Cu on corrosion performance of AXJ530 magnesium.Spec Cast Nonferrous Alloys.2006;26(11):736.
    [137]Chen L.Design of New Biodegradable Magnesium Alloy Material for Bone Implantation and Study on its Biomedical Functions.Nanjing:Nanjing University of Science and Technology;2016.5.
    [138]Chen SQ,Dong XP,Xiong XQ,Ma R,Fan ZT.Effects of Cu on microstructure,mechanical properties and damping capacity of as-cast Mg-3%Ni alloy.Adv Mater Res.2012;463-464:52.
    [139]Chen S,Dong X,Ma R,Zhang L,Wang H,Fan Z.Effects of Cu on microstructure,mechanical properties and damping capacity of high damping Mg-1%Mn based alloy.Mater Sci Eng,A.2012;551(31):87.
    [140]Li Y,Liu L,Wan P,Zhai Z,Mao Z,Ouyang Z,Yu D,Sun Q,Tan L,Ren L.Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis:in vitro and in vivo evaluations.Biomaterials.2016;106:250.
    [141]Liu C,Fu X,Pan H,Wan P,Wang L,Tan L,Ke W,Zhou Y,Yang K,Chu PK.Biodegradable Mg-Cu alloys with enhanced osteogenesis,angiogenesis,and long-lasting antibacterial effects.Sci Rep.2016;6:27374.
    [142]Hodgson AWE,Kurz S,Virtanen S,Fervel V,Olsson COA,Mischler S.Passive and transpassive behaviour of CoCrMo in simulated biological solutions.Electrochim Acta.2004;49(13):2167.
    [143]Reclaru L,Lüthy H,Eschler PY,Blatter A,Susz C.Corrosion behaviour of cobalt-chromium dental alloys doped with precious metals.Biomaterials.2005;26(21):4358.
    [144]Zhang ZY,Lu XC,Han BL,Luo JB.Rare earth effect on microstructure,mechanical and tribological properties of CoCrW coatings.Mater Sci Eng,A.2007;444(1-2):92.
    [145]Cao CD,G?rler GP,Herlach DM,Wei B.Liquid-liquid phase separation in undercooled Co-Cu alloys.Mater Sci Eng,A.2002;325(1-2):503.
    [146]Wang S,Yang C,Ren L,Shen M,Yang K.Study on antibacterial performance of Cu-bearing cobalt-based alloy.Mater Lett.2014;129(32):88.
    [147]Liu C.Study on microstructure and antibacterial properties of CoCrMoCu alloy.Jiamusi:Jiamusi University;2015.35.
    [148]Lu Y,Zhao C,Ren L,Guo S,Gan Y,Yang C,Wu S,Lin J,Huang T,Yang K.Preliminary assessment of metal-porcelain bonding strength of Co CrW alloy after 3wt%Cu addition.Mater Sci Eng,C.2016;63:37.
    [149]Zhang EL,Liu C.A new antibacterial Co-Cr-Mo-Cu alloy:preparation,biocorrosion,mechanical and antibacterial property.Mater Sci Eng,C.2016;69:134.
    [150]Zhang EL,Ge Y,Qin G.Hot deformation behavior of an antibacterial Co-29Cr-6Mo-1.8 Cu alloy and its effect on mechanical property and corrosion resistance.J Mater Sci Technol.2018;34(3):523.
    [151]Li WG.The corrosion behavior of Co-Cu alloy in biological environment and the preparation of drug loaded PLGA coating.Shenyang:Northeastern University;2017.35.
    [152]Yin Z,Ren YB,Zhan DS.Effects of copper content on the antibacterial performance and corrosion resistance of CoCrMoCu alloy.West China J Stomatol.2018;36(2):178.
    [153]Lu Y,Ren L,Xu X,Yang Y,Wu S,Luo J,Yang M,Liu L,Zhuang D,Yang K.Effect of Cu on microstructure,mechanical properties,corrosion resistance and cytotoxicity of CoCrWalloy fabricated by selective laser melting.J Mech Behav Biomed Mater.2018;81:130.
    [154]Hu X,Neoh KG,Zhang J,Kang ET.Bacterial and osteoblast behavior on titanium,cobalt-chromium alloy and stainless steel treated with alkali and heat:a comparative study for potential orthopedic applications.J Colloid Interface Sci.2014;417(29):410.
    [155]Totea G,Ionita D,Demetrescu I.Influence of doping ions on the antibacterial activity of biomimetic coating on CoCrMo alloy.J Bionic Eng.2015;12(4):583.
    [156]Ren L,Memarzadeh K,Zhang S,Sun Z,Yang C,Ren G,Allaker RP,Yang K.A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties.Mater Sci Eng,C.2016;67:461.
    [157]Jafari S,Raman RKS,Davies CHJ.Corrosion fatigue of a magnesium alloy in modified simulated body fluid.Eng Fract Mech.2015;137:2.
    [158]Gu XN,Zhou WR,Zheng YF,Cheng Y,Wei SC,Zhong SP,Xi TF,Chen LJ.Corrosion fatigue behaviors of two biomedical Mg alloys-AZ91D and WE43-in simulated body fluid.Acta Biomater.2010;6(12):4605.
    [159]Vojtěch D,Kubásek J,Serák J,Novák P.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation.Acta Biomater.2011;7(9):3515.
    [160]Bowen PK,Drelich J,Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents.Adv Mater.2013;25(18):2577.
    [161]Chen X,Yang D,Tian M,Long XM,Li AC.Effect of deformation heat treatment on microstructure and properties of Zn-Cu-Ti alloy.Spec Cast Nonferrous Alloys.2015;35(6):669.
    [162]Tang Z,Huang H,Niu J,Zhang L,Zhang H,Pei J,Tan J,Yuan G.Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants.Mater Des.2017;117:84.
    [163]Chen ML,Guo JP,Dong LY,Jin SB,Tang LB.Corrosion resistance of ZA alloy.Chin J Nonferrous Metals.1995;4:136.
    [164]Niu J,Tang Z,Hua H,Jia P,Hua Z,Yuan G,Ding W.Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application.Mater Sci Eng,C.2016;69:407.
    [165]Liu X,Sun J,Zhou F,Yang Y,Chang R,Qiu K,Pu Z,Li L,Zheng Y.Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application.Mater Des.2016;94:95.
    [166]Kaya H,?ad?rl?E,ülgen A.Investigation of the effect of composition on microhardness and determination of thermo-physical properties in the Zn-Cu alloys.Mater Des.2011;32(2):900.
    [167]Osório WR,Brito C,Peixoto LC,Garcia A.Electrochemical behavior of Zn-rich Zn-Cu peritectic alloys affected by macrosegregation and microstructural array.Electrochim Acta.2012;76(8):218.
    [168]Hou Y,Jia G,Yue R,Chen C,Pei J,Zhang H,Huang H,Xiong M,Yuan G.Synthesis of biodegradable Zn-based scaffolds using NaCl templates:relationship between porosity,compressive properties and degradation behavior.Mater Charact.2018;137:162.
    [169]Tang Z,Niu J,Hua H,Hua Z,Jia P,Ou J,Yuan G.Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications.J Mech Behav Biomed Mater.2017;72:182.
    [170]Li HF,Xie XH,Zheng YF,Cong Y,Zhou FY,Qiu KJ,Wang X,Chen SH,Huang L,Tian L.Corrigendum:development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg,Ca and Sr.Sci Rep.2015;5:10719.
    [171]Wang HT,Yang Z.In vitro evaluation of the feasibility of commercial Zn alloys as biodegradable metals.J Mater Sci Technol.2016;32(9):909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700