用户名: 密码: 验证码:
Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa
  • 作者:M.Saleem ; Khan ; Zhong ; Li ; Ke ; Yang ; Dake ; Xu ; Chunguang ; Yang ; Dan ; Liu ; Yassir ; Lekbach ; Enze ; Zhou ; Phuri ; Kalnaowakul
  • 英文作者:M.Saleem Khan;Zhong Li;Ke Yang;Dake Xu;Chunguang Yang;Dan Liu;Yassir Lekbach;Enze Zhou;Phuri Kalnaowakul;Institute of Metal Research, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University;Laboratory of Microbial Biotechnology, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University;Kasetsart University;
  • 英文关键词:Ti;;Microbiologically influenced corrosion;;Pseudomonas aeruginosa
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Institute of Metal Research, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University;Laboratory of Microbial Biotechnology, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University;Kasetsart University;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supportedfinancially by the National Natural Science Foundation of China(No.U1660118);; the National Basic Research Program of China(No.2014CB643300);; the National Environmental Corrosion Platform(NECP)
  • 语种:英文;
  • 页:CLKJ201901029
  • 页数:7
  • CN:01
  • ISSN:21-1315/TG
  • 分类号:218-224
摘要
Microbiologically influenced corrosion(MIC) is a big threat to the strength and safety of many metallic materials used in different environments throughout the world. The metabolites and bioactivity of the microorganisms cause severe deterioration on the metals. In this study, MIC of pure titanium(Ti) was studied in the presence of a highly corrosive aerobic marine bacterium Pseudomonas aeruginosa. The results obtained from electrochemical test showed that Ti was corrosion resistant in the abiotic culture medium after 14 d, while the increased corrosion current density(i_(corr)) obtained from polarization curves and the decreased charge transfer resistance(R_(ct)) from electrochemical impedance spectroscopy(EIS)indicated the accelerated corrosion of Ti caused by P. aeruginosa biofilm. For further confirmation of the above results, the surface of Ti was investigated using scanning electron microscopy(SEM), confocal laser scanning microscopy(CLSM) and X-ray photoelectron spectroscopy(XPS). According to the XPS results, TiO_2 was formed in both abiotic and biotic conditions, while unstable oxide Ti_2O_3 was detected in the presence of P. aeruginosa, leading to the defects in the passive film and localized corrosion. Pitting corrosion was investigated with the help of CLSM, and the largest pit depth found on Ti surface immersed in P. aeruginosa was 1.2 μm. Ti was not immune to MIC caused by P. aeruginosa.
        Microbiologically influenced corrosion(MIC) is a big threat to the strength and safety of many metallic materials used in different environments throughout the world. The metabolites and bioactivity of the microorganisms cause severe deterioration on the metals. In this study, MIC of pure titanium(Ti) was studied in the presence of a highly corrosive aerobic marine bacterium Pseudomonas aeruginosa. The results obtained from electrochemical test showed that Ti was corrosion resistant in the abiotic culture medium after 14 d, while the increased corrosion current density(i_(corr)) obtained from polarization curves and the decreased charge transfer resistance(R_(ct)) from electrochemical impedance spectroscopy(EIS)indicated the accelerated corrosion of Ti caused by P. aeruginosa biofilm. For further confirmation of the above results, the surface of Ti was investigated using scanning electron microscopy(SEM), confocal laser scanning microscopy(CLSM) and X-ray photoelectron spectroscopy(XPS). According to the XPS results, TiO_2 was formed in both abiotic and biotic conditions, while unstable oxide Ti_2O_3 was detected in the presence of P. aeruginosa, leading to the defects in the passive film and localized corrosion. Pitting corrosion was investigated with the help of CLSM, and the largest pit depth found on Ti surface immersed in P. aeruginosa was 1.2 μm. Ti was not immune to MIC caused by P. aeruginosa.
引文
[1]I.M.Pohrelyuk,V.M.Fedirko,O.V.Tkachuk,R.V.Proskurnyak,Corros.Sci.66(2013)392-398.
    [2]V.M.C.A.Oliveira,C.Aguiar,A.M.Vazquez,A.Robin,M.J.R.Barboza,Corros.Sci.88(2014)317-327.
    [3]H.Ahn,D.Lee,K.M.Lee,K.Lee,D.Baek,S.W.Park,Surf.Coat.Technol.202(2008)5784-5789.
    [4]S.Chen,B.H.Wu,D.Xie,F.Jiang,J.Liu,H.L.Sun,S.Zhu,B.Bai,Y.X.Leng,N.Huang,H.Sun,Surf.Coat.Technol.252(2014)8-14.
    [5]L.L.G.da Silva,M.Ueda,M.M.Silva,E.N.Codaro,Surf.Coat.Technol.201(2007)8136-8139.
    [6]R.Narayanan,S.K.Seshadri,Corros.Sci.50(2008)1521-1529.
    [7]L.T.Duarte,S.R.Biaggio,R.C.Rocha-Filho,N.Bocchi,Corros.Sci.72(2013)35-40.
    [8]J.Fojt,L.Joska,J.Málek,Corros.Sci.71(2013)78-83.
    [9]Y.Li,L.Qu,F.Wang,Corros.Sci.45(2003)1367-1381.
    [10]Y.J.Park,H.J.Song,I.Kim,H.S.Yang,J.Mater.Sci.Mater.Med.18(2007)565-575.
    [11]Y.Luo,S.Ge,H.Liu,Z.Jin,J.Biomech.42(2009)2708-2711.
    [12]Y.Deng,Q.Guan,Mater,Lett.146(2015)1-3.
    [13]C.Cui,B.Hu,L.Zhao,S.Liu,Mater.Des.32(2011)1684-1691.
    [14]J.Qu,P.J.Blau,B.C.Jolly,Wear 267(2009)818-822.
    [15]B.Zhang,B.Wang,L.Li,Y.Zheng,Den.Mater.27(2011)214-220.
    [16]A.Neville,B.A.B.McDougall,Wear 250-251(2001)726-735.
    [17]A.Neville,B.A.B.McDougall,Proc.Inst.Mech.Eng.216(2002)31-41.
    [18]M.D.Bermúdez,F.J.Carrión,G.Martínez-Nicolás,R.López,Wear 258(2005)693-700.
    [19]C.Pillay,J.Lin,Int.Biodeterior.Biodegrad.83(2013)158-165.
    [20]S.Yuan,S.Pehkonen,Colloids Surf.B Biointerfaces 59(2007)87-99.
    [21]J.Wu,D.Zhang,P.Wang,Y.Cheng,S.Sun,Y.Sun,S.Chen,Corros.Sci.112(2016)552-562.
    [22]J.G.Black,E.F.Toros,Microbiologia:Fundamentos E Perspectivas,fourth.ed.,Guanabara Koogan,Rio de Janeiro,2002.
    [23]Y.Li,D.Xu,C.Chen,X.Li,R.Jia,D.Zhang,W.Sand,F.Wang,T.Gu,J.Mater.Sci.Technol.34(2018)1713-1718.
    [24]H.Qian,D.Xu,C.Du,D.Zhang,X.Li,L.Huang,L.Deng,Y.Tu,J.M.Mol,H.A.Terryn,J.Mater.Chem.A Mater.Energy Sustain.5(2017)2355-2364.
    [25]J.Stott,Corros.Sci.35(1993)667-673.
    [26]J.Xia,C.Yang,D.Xu,D.Sun,L.Nan,Z.Sun,Q.Li,T.Gu,K.Yang,Biofouling 31(2015)481-492.
    [27]E.Hamzah,M.Hussain,Z.Ibrahim,A.Abdolahi,Corros.Eng.Sci.Technol.48(2013)116-120.
    [28]E.Hamzah,M.Hussain,Z.Ibrahim,A.Abdolahi,Arab.J.Sci.Eng.39(2014)6863-6870.
    [29]N.O.San,H.Naz?r,G.D?nmez,Corros.Sci.79(2014)177-183.
    [30]S.Yuan,A.M.Choong,S.Pehkonen,Corros.Sci.49(2007)4352-4385.
    [31]H.Li,C.Yang,E.Zhou,C.Yang,H.Feng,Z.Jiang,D.Xu,T.Gu,K.Yang,J.Mater.Sci.Technol.33(2017)1596-1603.
    [32]P.Beese,H.Venzlaff,J.Srinivasan,J.Garrelfs,M.Stratmann,K.J.Mayrhofer,Electrochim.Acta 105(2013)239-247.
    [33]Y.Jin,T.Zhang,Y.Samaranayake,H.Fang,H.Yip,L.Samaranayake,Mycopathologia 159(2005)353-360.
    [34]J.Wen,K.Zhao,T.Gu,I.I.Raad,Int.Biodeterior.Biodegrad.63(2009)1102-1106.
    [35]H.Li,E.Zhou,D.Zhang,D.Xu,J.Xia,C.Yang,H.Feng,Z.Jiang,X.Li,T.Gu,Sci.Rep.6(2016)20190.
    [36]S.Yuan,B.Liang,Y.Zhao,S.Pehkonen,Corros.Sci.74(2013)353-366.
    [37]S.Yuan,F.Xu,S.Pehkonen,Y.Ting,E.Kang,K.Neoh,J.Electrochem.Soc.155(2008)C196-C210.
    [38]Z.Qin,X.Pang,L.Qiao,M.Khodayari,A.A.Volinsky,Appl.Surf.Sci.303(2014)282-289.
    [39]Z.Qin,X.Pang,Y.Yan,L.Qiao,H.T.Tran,A.A.Volinsky,Corros.Sci.78(2014)287-292.
    [40]H.Lu,K.Gao,L.Qiao,Y.Wang,W.Chu,Corrosion 56(2000)1112-1118.
    [41]J.D.Brooks,S.H.Flint,Int.J.Food Sci.Technol.43(2008)2163-2176.
    [42]L.D.Renner,D.B.Weibel,MRS Bull.36(2011)347-355.
    [43]H.Li,C.Yang,E.Zhou,C.Yang,H.Feng,Z.Jiang,D.Xu,T.Gu,K.Yang,J.Mater.Sci.Technol.33(2017)1596-1603.
    [44]P.Li,Y.Zhao,Y.Liu,Y.Zhao,D.Xu,C.Yang,T.Zhang,T.Gu,K.Yang,J.Mater.Sci.Technol.33(2017)723-727.
    [45]D.Xu,J.Xia,E.Zhou,D.Zhang,H.Li,C.Yang,Q.Li,H.Lin,X.Li,K.Yang,Bioelectrochemistry 113(2017)1-8.
    [46]E.Zhou,H.Li,C.Yang,J.Wang,D.Xu,D.Zhang,T.Gu,Int.Biodeterior.Biodegrad.127(2018)1-9.
    [47]A.Cournet,M.Berge,C.Roques,A.Bergel,M.L.Delia,Electrochim.Acta 55(2010)4902-4908.
    [48]K.A.Zarasvand,V.R.Rai,Int.Biodeterior.Biodegrad.87(2014)66-74.
    [49]R.Jia,J.L.Tan,P.Jin,D.J.Blackwood,D.Xu,T.Gu,Corros.Sci.130(2018)1-11.
    [50]D.Xu,Y.Li,F.Song,T.Gu,Corros.Sci.77(2013)385-390.
    [51]D.Xu,Y.Li,T.Gu,Bioelectrochemistry 110(2016)52-58.
    [52]P.Zhang,D.Xu,Y.Li,K.Yang,T.Gu,Bioelectrochemistry 101(2015)14-21.
    [53]T.S.Gunasekera,R.C.Striebich,S.S.Mueller,E.M.Strobel,O.N.Ruiz,Environ.Sci.Technol.47(2013)13449-13458.
    [54]X.Y.Yong,D.Y.Shi,Y.L.Chen,F.Jiao,X.Lin,J.Zhou,S.Y.Wang,Y.C.Yong,Y.M.Sun,P.K.OuYang,Bioresour.Technol.152(2014)220-224.
    [55]X.Y.Yong,J.Feng,Y.L.Chen,D.Y.Shi,Y.S.Xu,J.Zhou,S.Y.Wang,L.Xu,Y.C.Yong,Y.M.Sun,Biosens.Bioelectron.56(2014)19-25.
    [56]J.Busalmen,M.Vazquez,S.De Sánchez,Electrochim.Acta 47(2002)1857-1865.
    [57]A.Cournet,M.Bergé,C.Roques,A.Bergel,M.L.Délia,Electrochim.Acta 55(2010)4902-4908.
    [58]Y.Huang,E.Zhou,C.Jiang,R.Jia,S.Liu,D.Xu,T.Gu,F.Wang,Electrochem.Commun.94(2018)9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700