用户名: 密码: 验证码:
Effect of precipitation pH and coexisting magnesium ion on phosphate adsorption onto hydrous zirconium oxide
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of precipitation pH and coexisting magnesium ion on phosphate adsorption onto hydrous zirconium oxide
  • 作者:Jianwei ; Lin ; Xingxing ; Wang ; Yanhui ; Zhan
  • 英文作者:Jianwei Lin;Xingxing Wang;Yanhui Zhan;College of Marine Ecology and Environment,Shanghai Ocean University;
  • 英文关键词:Hydrous zirconium oxide;;Different precipitationpH values;;Adsorption;;Phosphate;;Magnesium ion;;Effect
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:College of Marine Ecology and Environment,Shanghai Ocean University;
  • 出版日期:2018-12-21
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.76
  • 基金:supported by the Shanghai Natural Science Foundation (No.15ZR1420700);; the National Science Foundation of China (Nos.51408354 and 50908142);; the Scientific Research Project of Shanghai Science and Technology Committee (No.10230502900)
  • 语种:英文;
  • 页:HJKB201902016
  • 页数:21
  • CN:02
  • ISSN:11-2629/X
  • 分类号:170-190
摘要
To understand the effect of precipitation pH and coexisting Mg~(2+) on phosphate adsorption onto zirconium oxide(ZrO_2), ZrO_2 particles precipitated at pH 5.3, 7.1 and 10.5, i.e., ZrO_2(5.3), ZrO_2(7.1)and ZrO_2(10.5), respectively were prepared and characterized, then their adsorption performance and mechanism in the absence and presence of Mg~(2+) were comparatively investigated in this study. The results showed that the Elovich, pseudo-second-order and Langmuir isotherm models correlated with the experimental data well. The adsorption mechanism involved the complexation between phosphate and zirconium. Coexisting Mg~(2+) slightly inhibited the adsorption of phosphate on ZrO_2(5.3), including the adsorption capacity and rate, but coexisting Mg~(2+) greatly increased the adsorption capacity and rate for ZrO_2(7.1)and ZrO_2(10.5). The enhanced adsorption of phosphate on ZrO_2(7.1) and ZrO_2(10.5) in the presence of Mg~(2+) was mainly due to the formation of Mg~(2+)-HPO_4~(2-) ion pair(MgHPO_4~0) in the solution and then the adsorption of MgHPO_4~0 on the adsorbent surface, forming the phosphatebridged ternary complex Zr(OPO_3H)Mg. In the absence of Mg~(2+) , the maximum phosphate adsorption capacity at pH 7 calculated from the Langmuir isotherm model decreased in the order of ZrO 2(7.1)(67.3 mg/g) > ZrO_2(5.3)(53.6 mg/g) ≈ ZrO_2(10.5)(53.1 mg/g), but it followed the order of Zr O2(7.1)(97.0 mg/g) > ZrO_2(10.5)(79.7 mg/g) > ZrO_2(5.3)(51.3 mg/g) in the presence of Mg~(2+) . The results of this work suggest that ZrO_2(7.1) is more suitable for use as an adsorbent for the effective removal of phosphate from municipal wastewater than ZrO_2(5.3) and ZrO_2(10.5),because Mg~(2+) is generally present in this wastewater.
        To understand the effect of precipitation pH and coexisting Mg~(2+) on phosphate adsorption onto zirconium oxide(ZrO_2), ZrO_2 particles precipitated at pH 5.3, 7.1 and 10.5, i.e., ZrO_2(5.3), ZrO_2(7.1)and ZrO_2(10.5), respectively were prepared and characterized, then their adsorption performance and mechanism in the absence and presence of Mg~(2+) were comparatively investigated in this study. The results showed that the Elovich, pseudo-second-order and Langmuir isotherm models correlated with the experimental data well. The adsorption mechanism involved the complexation between phosphate and zirconium. Coexisting Mg~(2+) slightly inhibited the adsorption of phosphate on ZrO_2(5.3), including the adsorption capacity and rate, but coexisting Mg~(2+) greatly increased the adsorption capacity and rate for ZrO_2(7.1)and ZrO_2(10.5). The enhanced adsorption of phosphate on ZrO_2(7.1) and ZrO_2(10.5) in the presence of Mg~(2+) was mainly due to the formation of Mg~(2+)-HPO_4~(2-) ion pair(MgHPO_4~0) in the solution and then the adsorption of MgHPO_4~0 on the adsorbent surface, forming the phosphatebridged ternary complex Zr(OPO_3H)Mg. In the absence of Mg~(2+) , the maximum phosphate adsorption capacity at pH 7 calculated from the Langmuir isotherm model decreased in the order of ZrO 2(7.1)(67.3 mg/g) > ZrO_2(5.3)(53.6 mg/g) ≈ ZrO_2(10.5)(53.1 mg/g), but it followed the order of Zr O2(7.1)(97.0 mg/g) > ZrO_2(10.5)(79.7 mg/g) > ZrO_2(5.3)(51.3 mg/g) in the presence of Mg~(2+) . The results of this work suggest that ZrO_2(7.1) is more suitable for use as an adsorbent for the effective removal of phosphate from municipal wastewater than ZrO_2(5.3) and ZrO_2(10.5),because Mg~(2+) is generally present in this wastewater.
引文
Alves,M.D.,Aracri,F.M.,Cren,é.C.,Mendes,A.A.,2017.Isotherm,kinetic,mechanism and thermodynamic studies of adsorption of a microbial lipase on a mesoporous and hydrophobic resin.Chem.Eng.J.311,1-12.
    Chen,L.,Zhao,X.,Pan,B.C.,Zhang,W.X.,Hua,M.,Lv,L.,et al.,2015.Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.J.Hazard.Mater.284,35-42.
    Chitrakar,R.,Tezuka,S.,Sonoda,A.,Sakane,K.,Ooi,K.,Hirotsu,T.,2006.Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide.J.Colloid Interface Sci.297,426-433.
    D'Arcy,M.,Weiss,D.,Bluck,M.,Vilar,R.,2011.Adsorption kinetics,capacity and mechanism of arsenate and phosphate on a bifunctional TiO2-Fe2O3bi-composite.J.Colloid Interface Sci.364,205-212.
    Dou,X.M.,Mohan,D.,Pittman Jr.,C.U.,Yang,S.,2012.Remediating fluoride from water using hydrous zirconium oxide.Chem.Eng.J.198-199,236-245.
    Du,X.L.,Han,Q.,Li,J.Q.,Li,H.Y.,2017.The behavior of phosphate adsorption and its reactions on the surfaces of Fe-Mn oxide adsorbent.J.Taiwan Inst.Chem.Eng.76,167-175.
    Fang,L.P.,Wu,B.L.,Lo,I.M.C.,2017.Fabrication of silica-free superparamagnetic ZrO2@Fe3O4with enhanced phosphate recovery from sewage:performance and adsorption mechanism.Chem.Eng.J.319,258-267.
    Freundlich,H.,1926.Colloid and Capillary Chemistry.Methuen,London.
    Fu,D.D.,He,Z.Q.,Su,S.S.,Xu,B.,Liu,Y.L.,Zhao,Y.P.,2017.Fabrication ofα-FeOOH decorated graphene oxide-carbon nanotubes aerogel and its application in adsorption of arsenic species.J.Colloid Interface Sci.505,105-114.
    Ho,Y.S.,McKay,G.,1999.Pseudo-second order model for sorption processes.Process Biochem.34,451-465.
    Hu,P.,Liu,Q.,Wang,J.,Huang,R.H.,2017.Phosphate removal by Ce(III)-impregnated crosslinked chitosan complex from aqueous solutions.Polym.Eng.Sci.57,44-51.
    Huang,W.Y.,Zhang,Y.M.,Li,D.,2017.Adsorptive removal of phosphate from water using mesoporous materials:a review.J.Environ.Manag.193,470-482.
    Hunger,S.,Cho,H.,Sims,J.T.,Sparks,D.L.,2004.Direct speciation of phosphorus in alum-amended poultry litter:solid-state31PNMR investigation.Environ.Sci.Technol.38,674-681.
    Johir,M.A.H.,Pradhan,M.,Loganathan,P.,Kandasamy,J.,Vigneswaran,S.,2016.Phosphate adsorption from wastewater using zirconium(IV)hydroxide:kinetics,thermodynamics and membrane filtration adsorption hybrid system studies.J.Environ.Manag.167,167-174.
    Ju,X.Q.,Hou,J.F.,Tang,Y.Q.,Sun,Y.B.,Zheng,S.R.,Xu,Z.Y.,2016.ZrO2nanoparticles confined in CMK-3 as highly effective sorbent for phosphate adsorption.Microporous Mesoporous Mater.230,188-195.
    Kang,S.A.,Li,W.,Lee,H.E.,Phillips,B.L.,Lee,Y.J.,2011.Phosphate uptake by TiO2:batch studies and NMR spectroscopic evidence for multisite adsorption.J.Colloid Interface Sci.364,455-461.
    K?iv,M.,Liira,M.,Mander,ü.,M?tlep,R.,Vohla,C.,Kirsim?e,K.,2010.Phosphorus removal using Ca-rich hydrated oil shale ash as filter material-the effect of different phosphorus loadings and wastewater compositions.Water Res.44,5232-5239.
    Langmuir,I.,1916.The constitution and fundamental properties of solids and liquids Part I.Solid.J.Am.Chem.Soc.38,2221-2295.
    Lee,S.H.,Yoo,B.H.,Kim,S.K.,Lim,S.J.,Kim,J.Y.,Kim,T.H.,2013.Enhancement of struvite purity by re-dissolution of calcium ions in synthetic wastewaters.J.Hazard.Mater.261,29-37.
    Li,W.,Feng,X.H.,Yan,Y.P.,Sparks,D.L.,Phillips,B.L.,2013a.Solid-state NMR spectroscopic study of phosphate sorption mechanisms on aluminum(hydr)oxides.Environ.Sci.Technol.47,8308-8315.
    Li,W.,Pierre-Louis,A.M.,Kwon,K.D.,Kubicki,J.D.,Strongin,D.R.,Phillips,B.L.,2013b.Molecular level investigations of phosphate sorption on corundum(α-Al2O3)by31P solid state NMR,ATR-FTIRand quantum chemical calculation.Geochim.Cosmochim.Acta107,252-266.
    Li,R.H.,Wang,J.J.,Zhou,B.Y.,Awasthi,M.K.,Ali,A.,Zhang,Z.Q.,et al.,2016a.Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios.Sci.Total Environ.559,121-129.
    Li,X.,Zhang,Y.,Jing,L.,He,X.,2016b.Novel N-doped CNTs stabilized Cu2O nanoparticles as adsorbent for enhancing removal of Malachite Green and tetrabromobisphenol A.Chem.Eng.J.292,326-339.
    Lin,B.,Hua,M.,Zhang,Y.Y.,Zhang,W.M.,Lv,L.,Pan,B.C.,2017a.Effects of organic acids of different molecular size on phosphate removal by HZO-201 nanocomposite.Chemosphere166,422-430.
    Lin,J.W.,Zhan,Y.H.,Wang,H.,Chu,M.,Wang,C.F.,He,Y.,et al.,2017b.Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide.Chem.Eng.J.309,118-129.
    Liu,X.,Zhang,L.F.,2015.Removal of phosphate anions using the modified chitosan beads:adsorption kinetic,isotherm and mechanism studies.Powder Technol.277,112-119.
    Liu,H.L.,Sun,X.F.,Yin,C.Q.,Hu,C.,2008.Removal of phosphate by mesoporous ZrO2.J.Hazard.Mater.151,616-622.
    Lu,H.T.,Zhu,Z.L.,Zhang,H.,Zhu,J.Y.,Qiu,Y.L.,2015.Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide.Chem.Eng.J.276,365-375.
    Luo,X.B.,Wu,X.,Reng,Z.,Min,X.Y.,Xiao,X.,Luo,J.M.,2017a.Enhancement of phosphate adsorption on zirconium hydroxide by ammonium modification.Ind.Eng.Chem.Res.56,9419-9428.
    Luo,X.G.,Liu,C.,Yuan,J.,Zhu,X.R.,Liu,S.L.,2017b.Interfacial solid-phase chemical modification with mannich reaction and Fe(III)chelation for designing lignin-based spherical nanoparticle adsorbents for highly efficient removal of low concentration phosphate from water.ACS Sustain.Chem.Eng.5,6539-6547.
    Lürling,M.,Waajen,G.,van Oosterhout,F.,2014.Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication.Water Res.54,78-88.
    Ma,Y.X.,Xing,D.,Shao,W.J.,Du,X.Y.,La,P.Q.,2017.Preparation of polyamidoamine dendrimers functionalized magnetic graphene oxide for the adsorption of Hg(II)in aqueous solution.J.Colloid Interface Sci.505,352-363.
    Martins,L.R.,Rodrigues,J.A.V.,Adarme,O.F.H.,Melo,T.M.S.,Gurgel,L.V.A.,Gil,L.F.,2017.Optimization of cellulose and sugarcane bagasse oxidation:application for adsorptive removal of crystal violet and auramine-O from aqueous solution.J.Colloid Interface Sci.494,223-241.
    Pan,X.L.,Wang,J.L.,Zhang,D.Y.,2009.Sorption of cobalt to bone char:kinetics,competitive sorption and mechanism.Desalination 249,609-614.
    Pan,S.L.,Li,J.S.,Wan,G.J.,Liu,C.,Fan,W.H.,Wang,L.J.,2016.Nanosized yolk-shell Fe3O4@Zr(OH)xspheres for efficient removal of Pb(II)from aqueous solution.J.Hazard.Mater.309,1-9.
    Pawar,R.R.,Gupta,P.,Lalhmunsiama,Bajaj,H.C.,Lee,S.M.,2016.Al-intercalated acid activated bentonite beads for the removal of aqueous phosphate.Sci.Total Environ.572,1222-1230.
    Qin,K.,Li,F.,Xu,S.,Wang,T.H.,Liu,C.H.,2017.Sequential removal of phosphate and cesium by using zirconium oxide:a demonstration of designing sustainable adsorbents for green water treatment.Chem.Eng.J.322,275-280.
    Rashid,M.,Price,N.T.,Gracia Pinilla,M.á.,O'Shea,K.E.,2017.Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles.Water Res.123,353-360.
    Rodrigues,L.A.,Maschio,L.J.,da Silva,R.E.,da Silva,M.L.C.P.,2010.Adsorption of Cr(VI)from aqueous solution by hydrous zirconium oxide.J.Hazard.Mater.173,630-636.
    Rodrigues,L.A.,Maschio,L.J.,Coppio Lde,S.,Thim,G.P.,da Silva,M.L.,2012.Adsorption of phosphate from aqueous solution by hydrous zirconium oxide.Environ.Technol.33,1345-1351.
    Sarma,J.,Mahiuddin,S.,2014.Specific ion effect on the point of zero charge ofα-alumina and on the adsorption of3,4-dihydroxybenzoic acid ontoα-alumina surface.Colloids Surf.A Physicochem.Eng.Asp.457,419-424.
    Seliem,M.K.,Komarneni,S.,Abu Khadra,M.R.,2016.Phosphate removal from solution by composite of MCM-41 silica with rice husk:kinetic and equilibrium studies.Microporous Mesoporous Mater.224,51-57.
    Shang,Y.,Xu,X.,Qi,S.T.,Zhao,Y.X.,Ren,Z.F.,Gao,B.Y.,2017.Preferable uptake of phosphate by hydrous zirconium oxide nanoparticles embedded in quaternary-ammonium Chinese reed.J.Colloid Interface Sci.496,118-129.
    Smith,V.H.,Tilman,G.D.,Nekola,J.C.,1999.Eutrophication:impacts of excess nutrient inputs on freshwater,marine,and terrestrial ecosystems.Environ.Pollut.100,179-196.
    ?tefani?,G.,?tefani?,I.I.,Musi?,S.,2000.Influence of the synthesis conditions on the properties of hydrous zirconia and the stability of low-temperature t-ZrO2.Mater.Chem.Phys.65,197-207.
    Su,Y.,Cui,H.,Li,Q.,Gao,S.,Shang,J.K.,2013.Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles.Water Res.47,5018-5026.
    Talebi Atouei,M.,Rahnemaie,R.,Goli Kalanpa,E.,Davoodi,M.H.,2016.Competitive adsorption of magnesium and calcium with phosphate at the goethite water interface:kinetics,equilibrium and CD-MUSIC modeling.Chem.Geol.437,19-29.
    Wang,Z.,Xing,M.C.,Fang,W.K.,Wu,D.Y.,2016.One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water.Appl.Surf.Sci.366,67-77.
    Wei,S.Y.,Tan,W.F.,Liu,F.,Zhao,W.,Weng,L.P.,2014.Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite.Geoderma 213,478-484.
    Xie,F.Z.,Wu,F.C.,Liu,G.J.,Mu,Y.S.,Feng,C.L.,Wang,H.H.,et al.,2014a.Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite.Environ.Sci.Technol.48,582-590.
    Xie,J.,Wang,Z.,Lu,S.Y.,Wu,D.Y.,Zhang,Z.J.,Kong,H.N.,2014b.Removal and recovery of phosphate from water by lanthanum hydroxide materials.Chem.Eng.J.254,163-170.
    Xiong,W.P.,Tong,J.,Yang,Z.H.,Zeng,G.M.,Zhou,Y.Y.,Wang,D.B.,et al.,2017.Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber:performance and mechanism.J.Colloid Interface Sci.493,17-23.
    Yan,Y.P.,Koopal,L.K.,Li,W.,Zheng,A.M.,Yang,J.,Liu,F.,et al.,2015.Size-dependent sorption of myo-inositol hexakisphosphate and orthophosphate on nano-γ-Al2O3.J.Colloid Interface Sci.451,85-92.
    Yao,W.S.,Millero,F.J.,1996.Adsorption of phosphate on manganese dioxide in seawater.Environ.Sci.Technol.30,536-541.
    Zhang,H.L.,Sheng,G.P.,Fang,W.,Wang,Y.P.,Fang,C.Y.,Shao,L.M.,et al.,2015.Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.Water Res.84,171-180.
    Zhao,D.D.,Chen,J.P.,2016.Application of zirconium/PVA modified flat-sheet PVDF membrane for the removal of phosphate from aqueous solution.Ind.Eng.Chem.Res.55,6835-6844.
    Zong,E.M.,Wei,D.,Wan,H.Q.,Zheng,S.R.,Xu,Z.Y.,Zhu,D.Q.,2013.Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide.Chem.Eng.J.221,193-203.
    Zong,E.M.,Liu,X.H.,Jiang,J.H.,Fu,S.Y.,Chu,F.X.,2016.Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution.Appl.Surf.Sci.387,419-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700