用户名: 密码: 验证码:
Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk
  • 作者:Jun ; Lu ; Zhiman ; Yang ; Wanying ; Xu ; Xiaoshuang ; Shi ; Rongbo ; Guo
  • 英文作者:Jun Lu;Zhiman Yang;Wanying Xu;Xiaoshuang Shi;Rongbo Guo;Shandong Industrial Engineering Laboratory of Biogas Production & Utilization,Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 英文关键词:Corn stalk;;Lignocellulose degradation;;Microbial consortium;;Bacterial community structure
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:Shandong Industrial Engineering Laboratory of Biogas Production & Utilization,Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2019-03-08
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.78
  • 基金:supported by the National Natural Science Foundation of China (No. 41773102);; the Key Research & Development Project of Shandong (No. 2017GSF217007);; the Key Technological Innovation Project of Shandong (No. 2017CXGC0305)
  • 语种:英文;
  • 页:HJKB201904011
  • 页数:9
  • CN:04
  • ISSN:11-2629/X
  • 分类号:120-128
摘要
Six different environmental samples were applied to enrich microbial consortia for efficient degradation of corn stalk,under the thermophilic and mesophilic conditions.The consortium obtained from anaerobic digested sludge under thermophilic condition(TC-Y)had the highest lignocellulose-degrading activity.The CO_2yield was 246.73 m L/g VS in23 days,meanwhile,the maximum CO_2production rate was 15.48 mL/(CO_2·d),which was28.75%and 52.27%higher than that under mesophilic condition,respectively.The peak value of cellulase activity reached 0.105 U/mL,which was at least 34.61%higher than the other groups.In addition,49.5%of corn stalk was degraded in 20 days,moreover,the degradation ratio of cellulose,hemicellulose and lignin can reach 52.76%,62.45%and42.23%,respectively.Microbial consortium structure analysis indicated that the TC-Y contained the phylum of Gemmatimonadetes,Acidobacteria,Chloroflexi,Planctomycetes,Firmicutes,and Proteobacteria.Furthermore,the Pseudoxanthomonas belonging to GammaProteobacteria might be the key bacterial group for the lignocellulose degradation.These results indicated the capability of degrading un-pretreated corn stalk and the potential for further investigation and application of TC-Y.
        Six different environmental samples were applied to enrich microbial consortia for efficient degradation of corn stalk,under the thermophilic and mesophilic conditions.The consortium obtained from anaerobic digested sludge under thermophilic condition(TC-Y)had the highest lignocellulose-degrading activity.The CO_2yield was 246.73 m L/g VS in23 days,meanwhile,the maximum CO_2production rate was 15.48 mL/(CO_2·d),which was28.75%and 52.27%higher than that under mesophilic condition,respectively.The peak value of cellulase activity reached 0.105 U/mL,which was at least 34.61%higher than the other groups.In addition,49.5%of corn stalk was degraded in 20 days,moreover,the degradation ratio of cellulose,hemicellulose and lignin can reach 52.76%,62.45%and42.23%,respectively.Microbial consortium structure analysis indicated that the TC-Y contained the phylum of Gemmatimonadetes,Acidobacteria,Chloroflexi,Planctomycetes,Firmicutes,and Proteobacteria.Furthermore,the Pseudoxanthomonas belonging to GammaProteobacteria might be the key bacterial group for the lignocellulose degradation.These results indicated the capability of degrading un-pretreated corn stalk and the potential for further investigation and application of TC-Y.
引文
Alonso,D.M.,Wettstein,S.G.,Dumesic,J.A.,2012.Bimetallic catalysts for upgrading of biomass to fuels and chemicals.Chem.Soc.Rev.41,8075-8098.
    APHA,2006.Standard Methods for the Examination of Water and Wastewater.21st Ed.American Public Health Association.
    Asgher,M.,Wahab,A.,Bilal,M.,Nasir Iqbal,H.M.,2016.Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation.Biocatal.Agric.Biotechnol.6,195-201.
    Bilal,M.,Asgher,M.,Iqbal,H.M.,Hu,H.,Zhang,X.,2017a.Biobased degradation of emerging endocrine-disrupting and dyebased pollutants using cross-linked enzyme aggregates.Environ.Sci.Pollut.Res.Int.24,7035-7041.
    Bilal,M.,Asgher,M.,Iqbal,H.M.N.,Ramzan,M.,2017b.Enhanced bio-ethanol production from old newspapers waste through alkali and enzymatic delignification.Waste Biomass Valoriz.8,2271-2281.
    Bilal,M.,Asgher,M.,Parra-Saldivar,R.,Hu,H.,Wang,W.,Zhang,X.,et al.,2017c.Immobilized ligninolytic enzymes:an innovative and environmental responsive technology to tackle dye-based industrial pollutants-a review.Sci.Total Environ.576,646-659.
    Bugg,T.D.,Ahmad,M.,Hardiman,E.M.,Singh,R.,2011.The emerging role for bacteria in lignin degradation and bioproduct formation.Curr.Opin.Biotechnol.22,394-400.
    Fernandez-Gomez,B.,Richter,M.,Schuler,M.,Pinhassi,J.,Acinas,S.G.,Gonzalez,J.M.,et al.,2013.Ecology of marine Bacteroidetes:a comparative genomics approach.ISME J.7,1026-1037.
    Fu,S.F.,Wang,F.,Yuan,X.Z.,Yang,Z.M.,Luo,S.J.,Wang,C.S.,et al.,2015.The thermophilic(55°C)microaerobic pretreatment of corn straw for anaerobic digestion.Bioresour.Technol.175,203-208.
    Fu,S.F.,Wang,F.,Shi,X.S.,Guo,R.B.,2016.Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure.Chem.Eng.J.287,523-528.
    Ghose,T.K.,1987.Measurement of cellulase activities.Pure Appl.Chem.59,257-268.
    Goering,H.K.,Soest,P.J.V.,1970.Forage Fiber Analyses(Apparatus,Reagents,Procedures,and Some Applications).Agricultural Research Service,United States Department of Agriculture.
    Guo,P.,Wang,X.,Zhu,W.,Yang,H.,Cheng,X.,Cui,Z.,2008.Degradation of corn stalk by the composite microbial system of MC1.J.Environ.Sci.20,109-114.
    Guo,P.,Zhu,W.,Wang,H.,Lu,Y.,Wang,X.,Zheng,D.,et al.,2010.Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity.J.Microbiol.Biotechnol.20,254-264.
    Hamid,S.B.A.,Islam,M.M.,Das,R.,2015.Cellulase biocatalysis:key influencing factors and mode of action.Cellulose 22,2157-2182.
    Huang,X.F.,Santhanam,N.,Badri,D.V.,Hunter,W.J.,Manter,D.K.,Decker,S.R.,et al.,2013.Isolation and characterization of lignin-degrading bacteria from rainforest soils.Biotechnol.Bioeng.110,1616-1626.
    Hug,L.A.,Castelle,C.J.,Wrighton,K.C.,Thomas,B.C.,Sharon,I.,Frischkorn,K.R.,et al.,2013.Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling.Microbiome 1,1-22.
    Kampmann,K.,Ratering,S.,Kramer,I.,Schmidt,M.,Zerr,W.,Schnell,S.,2012.Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates.Appl.Environ.Microbiol.78,2106-2119.
    Kumar,R.,Mago,G.,Balan,V.,Wyman,C.E.,2009.Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.Bioresour.Technol.100,3948-3962.
    Kumar,M.,Revathi,K.,Khanna,S.,2015.Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp.R-28.Carbohydr.Polym.134,761-766.
    Kupryashina,M.A.,Petrov,S.V.,Ponomareva,E.G.,Nikitina,V.E.,2015.Ligninolytic activity of bacteria of the genera Azospirillum and Niveispirillum.Mikrobiologiia 84,691-696.
    Liang,J.,Fang,X.,Lin,Y.,Wang,D.,2018.A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification.J.Hazard.Mater.347,341-348.
    Lim,J.W.,Chiam,J.A.,Wang,J.Y.,2014.Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste.Bioresour.Technol.171,132-138.
    Maki,M.,Leung,K.T.,Qin,W.,2009.The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass.Int.J.Biol.Sci.5,500-516.
    Oh,H.N.,Lee,T.K.,Park,J.W.,No,J.H.,Kim,D.,Sul,W.J.,2017.Metagenomic SMRT sequencing-based exploration of novel lignocellulose-degrading capability in wood detritus from Torreya nucifera in Bija Forest on Jeju Island.J.Microbiol.Biotechnol.27,1670-1680.
    Phongpreecha,T.,Hool,N.C.,Stoklosa,R.J.,Klett,A.S.,Foster,C.E.,Bhalla,A.,et al.,2017.Predicting lignin depolymerization yields from quantifiable properties using fractionated biorefinery lignins.Green Chem.19,5131-5143.
    Ramadoss,G.,Muthukumar,K.,2015.Influence of dual salt on the pretreatment of sugarcane bagasse with hydrogen peroxide for bioethanol production.Chem.Eng.J.260,178-187.
    Sadhu,S.,Maiti,T.K.,2013.Cellulase production by bacteria:a review.Br.Microbiol.Res.J.3,235-258.
    Shallom,D.,Shoham,Y.,2003.Microbial hemicellulases.Curr.Opin.Microbiol.6,219-228.
    Takai,K.,Campbell,B.J.,Cary,S.C.,Suzuki,M.,Oida,H.,Nunoura,T.,et al.,2005.Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria.Appl.Environ.Microbiol.71,7310-7320.
    Tian,W.,Zhang,Z.,Wang,Z.,Wang,X.,Li,Y.,Liu,Z.,2014.Lignocelluloses degradation and related biological characteristics during thermophilic composting of cow dung.Acta Agric.Zhejiangensis 26,432-438.
    Wang,W.D.,Yan,L.,Cui,Z.J.,Gao,Y.M.,Wang,Y.J.,Jing,R.Y.,2011.Characterization of a microbial consortium capable of degrading lignocellulose.Bioresour.Technol.102,9321-9324.
    Wang,H.,Li,J.J.,Lu,Y.C.,Guo,P.,Wang,X.F.,Kazuhiro,M.,et al.,2013a.Bioconversion of un-pretreated lignocellulosic materials by a microbial consortium XDC-2.Bioresour.Technol.136,481-487.
    Wang,Y.X.,Liu,Q.,Yan,L.,Gao,Y.M.,Wang,Y.J.,Wang,W.D.,2013b.A novel lignin degradation bacterial consortium for efficient pulping.Bioresour.Technol.139,113-119.
    Wang,Z.,Cao,G.,Zheng,J.,Fu,D.,Song,J.,Zhang,J.,et al.,2015.Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess.Biotechnol.Biofuels 8,1-9.
    Wang,C.,Dong,D.,Wang,H.,Muller,K.,Qin,Y.,Wang,H.,et al.,2016.Metagenomic analysis of microbial consortia enriched from compost:new insights into the role of Actinobacteria in lignocellulose decomposition.Biotechnol.Biofuels 9,1-17.
    Ward,N.L.,Challacombe,J.F.,Janssen,P.H.,Henrissat,B.,Coutinho,P.M.,Wu,M.,et al.,2009.Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils.Appl.Environ.Microbiol.75,2046-2056.
    Wen,B.,Yuan,X.,Cao,Y.,Liu,Y.,Wang,X.,Cui,Z.,2012.Optimization of liquid fermentation of microbial consortium WSD-5 followed by saccharification and acidification of wheat straw.Bioresour.Technol.118,141-149.
    Wirth,R.,Kovács,E.,Maróti,G.,Bagi,Z.,Rákhely,G.,Kovács,K.L.,2012.Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.Biotechnol.Biofuels 5,41-56.
    Wongwilaiwalin,S.,Rattanachomsri,U.,Laothanachareon,T.,Eurwilaichitr,L.,Igarashi,Y.,Champreda,V.,2010.Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system.Enzyme Microb.Technol.47,283-290.
    Wushke,S.,Levin,D.B.,Cicek,N.,Sparling,R.,2015.Facultative anaerobe Caldibacillus debilis GB1:characterization and use in a designed aerotolerant,cellulose-degrading coculture with Clostridium thermocellum.Appl.Environ.Microbiol.81,5567-5573.
    Yang,Z.,Guo,R.,Xu,X.,Fan,X.,Li,X.,2011.Thermo-alkaline pretreatment of lipid-extracted microalgal biomass residues enhances hydrogen production.J.Chem.Technol.Biotechnol.86,454-460.
    Zhang,D.,Wang,Y.,Zhang,C.,Zheng,D.,Guo,P.,Cui,Z.,2018.Characterization of a thermophilic lignocellulose-degrading microbial consortium with high extracellular xylanase activity.J.Microbiol.Biotechnol.28,305-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700