用户名: 密码: 验证码:
n-Hexadecane and pyrene biodegradation and metabolization by Rhodococcus sp. T1 isolated from oil contaminated soil
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:n-Hexadecane and pyrene biodegradation and metabolization by Rhodococcus sp. T1 isolated from oil contaminated soil
  • 作者:Xiaoqiang ; Jia ; Yun ; He ; Lei ; Huang ; Dawei ; Jiang ; Wenyu ; Lu
  • 英文作者:Xiaoqiang Jia;Yun He;Lei Huang;Dawei Jiang;Wenyu Lu;Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University;Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education;Synthetic Biology Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin);
  • 英文关键词:Biodegradation;;Metabolite;;n-Hexadecane;;Pyrene;;Rhodococcus sp. T1
  • 中文刊名:ZHGC
  • 英文刊名:中国化学工程学报(英文版)
  • 机构:Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University;Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education;Synthetic Biology Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin);
  • 出版日期:2019-02-15
  • 出版单位:Chinese Journal of Chemical Engineering
  • 年:2019
  • 期:v.27
  • 基金:Supported by the National Basic Research Program of China(“973” Program:2014CB745100);; the National Natural Science Foundation of China(21576197);; Tianjin Key Research&Development Program(16YFXTSF00460)
  • 语种:英文;
  • 页:ZHGC201902021
  • 页数:7
  • CN:02
  • ISSN:11-3270/TQ
  • 分类号:184-190
摘要
The high-molecular weight polycyclic aromatic hydrocarbons(PAHs) pyrene and typical long chain alkane nhexadecane are both difficult to degrade. In this study, n-hexadecane and pyrene degrading strain Rhodococcus sp. T1 was isolated from oil contaminated soil. Strain T1 could remove 90.81% n-hexadecane(2 vol%) and 42.79% pyrene(200 mg·L~(-1)) as a single carbon within 5 days, respectively. Comparatively, the degradation of pyrene increased to 60.63%, but the degradation of n-hexadecane decreased to 87.55% when these compounds were mixed. Additionally, identification and analysis of degradation metabolites of Rhodococcus sp. T1 in the above experiments showed that there were significant changes in alanine, methylamine, citric acid and heptadecanoic acid between sole and dual substrate degradation. The optimal conditions for degradation were then determined based on analysis of the pH, salinity, additional nutrient sources and liquid surface activity.Under the optimal conditions of pH 7.0, 35 °C, 0.5% NaCl, 5 mg·L~(-1) of yeast extract and 90 mg·L~(-1) of surfactant,the degradation increased in single or dual carbon sources. To our knowledge, this is the first study to discuss metabolite changes in Rhodococcus sp. T1 using sole substrate and dual substrate to enhance the long-chain alkanes and PAHs degradation potential.
        The high-molecular weight polycyclic aromatic hydrocarbons(PAHs) pyrene and typical long chain alkane nhexadecane are both difficult to degrade. In this study, n-hexadecane and pyrene degrading strain Rhodococcus sp. T1 was isolated from oil contaminated soil. Strain T1 could remove 90.81% n-hexadecane(2 vol%) and 42.79% pyrene(200 mg·L~(-1)) as a single carbon within 5 days, respectively. Comparatively, the degradation of pyrene increased to 60.63%, but the degradation of n-hexadecane decreased to 87.55% when these compounds were mixed. Additionally, identification and analysis of degradation metabolites of Rhodococcus sp. T1 in the above experiments showed that there were significant changes in alanine, methylamine, citric acid and heptadecanoic acid between sole and dual substrate degradation. The optimal conditions for degradation were then determined based on analysis of the pH, salinity, additional nutrient sources and liquid surface activity.Under the optimal conditions of pH 7.0, 35 °C, 0.5% NaCl, 5 mg·L~(-1) of yeast extract and 90 mg·L~(-1) of surfactant,the degradation increased in single or dual carbon sources. To our knowledge, this is the first study to discuss metabolite changes in Rhodococcus sp. T1 using sole substrate and dual substrate to enhance the long-chain alkanes and PAHs degradation potential.
引文
[1]G.A.Silvacastro,B.Rodelas,C.Perucha,J.Laguna,J.Gonzálezlópez,C.Calvo,Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents:assays in a pilot plant,Sci.Total Environ.347(2013)445-446.
    [2]Y.Chen,C.Li,Z.Zhou,J.Wen,X.You,Y.Mao,C.Lu,G.Huo,X.Jia,Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis,Appl.Biochem.Biotechnol.172(2014)3433-3447.
    [3]L.Meng,H.Li,M.Bao,P.Sun,Metabolic pathway for a new strain Pseudomonas synxantha LSH-7:from chemotaxis to uptake of n-hexadecane,Sci.Rep.7(2017)39068.
    [4]Z.Wang,Z.Liu,Y.Yang,T.Li,M.Liu,Distribution of PAHs in tissues of wetland plants and the surrounding sediments in the Chongming wetland,Shanghai,China,Chemosphere 89(2012)221-227.
    [5]D.Ollis,Slick solution for oil spills,Nature 358(1992)453-454.
    [6]L.B.Salam,O.S.Obayor,O.S.Akashoro,G.O.Okogie,Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil,Int.J.Agric.Biol.13(2011)1560-853013.
    [7]L.W.Peng,M.J.Sheu,L.Y.Lin,C.T.Wu,H.M.Chiang,W.H.Lin,M.C.Lee,H.C.Chen,Effect of heat treatments on the essential oils of kumquat(Fortunella margarita Swingle),Food Chem.136(2013)532-537.
    [8]C.Okieimen,F.Okieimen,Effect of natural rubber processing sludge on the degradation of crude oil hydrocarbons in soil,Bioresour.Technol.82(2002)95-97.
    [9]M.B.Yerima,A.A.Balogun,A.A.Farouq,S.Muhammad,Laboratory based degradation of light crude oil by aquatic phycomycetes,Afr.J.Biotechnol.8(2009)3851-3853.
    [10]M.Romantschuk,I.Sarand,T.Pet?nen,R.Peltola,M.Jonsson-Vihanne,T.Koivula,K.Yrj?l?,K.Haahtela,Means to improve the effect of in situ bioremediation of contaminated soil:an overview of novel approaches,Environ.Pollut.107(2000)179-185.
    [11]L.Martínková,B.Uhnáková,M.Pátek,J.Ne?vera,V.K?en,Biodegradation potential of the genus Rhodococcus,Environ.Int.35(2009)162.
    [12]J.Yan,J.Wen,H.Li,S.Yang,Z.Hu,The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis,Biochem.Eng.J.24(2005)243-247.
    [13]A.A.Shah,A.Nawaz,L.Kanwal,F.Hasan,S.Khan,M.Badshah,Degradation of poly(ε-caprolactone)by a thermophilic bacterium Ralstonia sp.strain MRL-TL isolated from hot spring,Int.Biodeterior.Biodegrad.98(2015)35-42.
    [14]U.Walter,M.Beyer,J.Klein,H.J.Rehm,Degradation of pyrene by Rhodococcus sp.UW1,Appl.Microbiol.Biotechnol.34(1991)671-676.
    [15]B.Cao,K.Nagarajan,K.C.Loh,Biodegradation of aromatic compounds:current status and opportunities for biomolecular approaches,Appl.Microbiol.Biotechnol.85(2009)207-228.
    [16]B.Mahanty,K.Pakshirajan,D.V.Venkata,Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system,Bioresour.Technol.99(2008)2694-2698.
    [17]W.Qin,F.Q.Fan,Y.Zhu,Y.Wang,X.Liu,A.Ding,J.Dou,Comparative proteomic analysis and characterization of benzo(a)pyrene removal by Microbacterium sp.strain M.CSW3 under denitrifying conditions,Bioprocess Biosyst.Eng.40(12)(2017)1825-1838.
    [18]L.Wang,Y.Tang,S.Wang,R.L.Liu,M.Z.Liu,Y.Zhang,F.L.Liang,L.Feng,Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes,Extremophiles 10(2006)347.
    [19]W.Wang,B.Cai,Z.Shao,Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3,Front.Microbiol.5(2014)711.
    [20]J.S.Seo,Y.S.Keum,Q.X.Li,Bacterial degradation of aromatic compounds,Int.J.Environ.Res.Public Health 6(2009)278.
    [21]M.R.Viant,U.Sommer,Mass spectrometry based environmental metabolomics:a primer and review,Metabolomics 9(2013)144-158.
    [22]M.Z.Ding,J.S.Cheng,W.H.Xiao,B.Qiao,Y.J.Yuan,Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC-TOF-MS,Metabolomics 5(2009)229.
    [23]X.Pan,H.Liu,J.Liu,C.Wang,J.Wen,Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acidproduction from xylose,Bioresour.Technol.222(2016)24-32.
    [24]M.Eshelli,L.Harvey,R.Edrada-Ebel,B.Mcneil,Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0,Toxins 7(2015)439.
    [25]R.A.Scott,S.E.Lindow,Transcriptional control of quorum sensing and associated metabolic interactions in Pseudomonas syringae strain B728a,Mol.Microbiol.99(2015)1080-1098.
    [26]W.Lu,X.Su,M.S.Klein,I.A.Lewis,O.Fiehn,J.D.Rabinowitz,Metabolite measurement:pitfalls to avoid and practices to follow,Annu.Rev.Biochem.86(2017)277.
    [27]O.G.Brakstad,A.G.G.L?deng,Microbial diversity during biodegradation of crude oil in seawater from the north sea,Microb.Ecol.49(2005)94-103.
    [28]O.S.Obayori,S.A.Adebusoye,A.O.Adewale,G.O.Oyetibo,O.O.Oluyemi,R.A.Amokun,M.O.Ilori,Differential degradation of crude oil(Bonny Light)by four Pseudomonas strains,J.Environ.Sci.21(2009)243-248.
    [29]A.Wentzel,H.Sletta,S.Consortium,T.E.Ellingsen,P.Bruheim,Intracellular metabolite pool changes in response to nutrient depletion induced metabolic switching in Streptomyces coelicolor,Meta 2(2012)178-194.
    [30]M.Xia,D.Huang,S.Li,J.Wen,X.Jia,Y.Chen,Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis,Biotechnol.Bioeng.110(2013)2717-2730.
    [31]M.Z.Ding,X.Zhou,Y.J.Yuan,Metabolome profiling reveals adaptive evolution of Saccharomyces cerevisiae during repeated vacuum fermentations,Metabolomics 6(2010)42-55.
    [32]L.Huang,C.Liu,Y.Liu,X.Jia,The composition analysis and preliminary cultivation optimization of a PHA-producing microbial consortium with xylose as a sole carbon source,Waste Manag.52(2016)77.
    [33]J.B.van Beilen,E.G.Funhoff,Expanding the alkane oxygenase toolbox:new enzymes and applications,Curr.Opin.Biotechnol.16(2005)308-314.
    [34]C.Muangchinda,A.Yamazoe,D.Polrit,H.Thoetkiattikul,W.Mhuantong,V.Champreda,O.Pinyakong,Biodegradation of high concentrations of mixed polycyclic aromatic hydrocarbons by indigenous bacteria from a river sediment:a microcosm study and bacterial community analysis,Environ.Sci.Pollut.Res.24(2017)4591-4602.
    [35]B.Wang,Q.Lai,Z.Cui,T.Tan,Z.Shao,A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp.P1,Environ.Microbiol.10(2008)1948-1963.
    [36]S.Dietmair,M.P.Hodson,L.E.Quek,N.E.Timmins,P.Chrysanthopoulos,S.S.Jacob,P.Gray,L.K.Nielsen,Metabolite profiling of CHO cells with different growth characteristics,Biotechnol.Bioeng.109(2012)1404-1414.
    [37]B.Wang,J.Liu,H.Liu,D.Huang,J.Wen,Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus,J.Ind.Microbiol.Biotechnol.42(2015)949.
    [38]Y.Liu,J.Liu,C.Li,J.Wen,R.Ban,X.Jia,Metabolic profiling analysis of the degradation of phenol and 4-chlorophenol by Pseudomonas sp.cbp1-3,Biochem.Eng.J.90(2014)316-323.
    [39]N.Lu,D.Wei,X.Jiang,F.Chen,S.Yang,Fatty acids profiling and biomarker identification in snow slga Chlamydomonas sivalis by NaCl stress using GC/MS and multivariate statistical analysis,Anal.Lett.45(2012)1172-1183.
    [40]M.Abouseoud,A.Yataghene,A.Amrane,R.Maachi,Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens,J.Hazard.Mater.180(2010)131-136.
    [41]C.Dorta,R.Cruz,P.de Oliva-Neto,D.J.C.Moura,Sugarcane molasses and yeast powder used in the fructooligosaccharides production by Aspergillus japonicus-FCL119T and Aspergillus niger ATCC 20611,J.Ind.Microbiol.Biotechnol.33(2006)1003.
    [42]C.N.Mulligan,R.N.Yong,B.F.Gibbs,Surfactant-enhanced remediation of contaminated soil:a review,Eng.Geol.60(2001)371-380.
    [43]H.Yu,G.H.Huang,H.N.Xiao,L.Wang,W.Chen,Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons(PAHs)in soil-water systems,Environ.Sci.Pollut.Res.21(2014)10536-10549.
    [44]W.H.Noordman,J.H.J.Wachter,G.J.D.Boer,D.B.Janssen,The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability,J.Biotechnol.94(2002)195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700