用户名: 密码: 验证码:
Sectoral changes of the peripapillary choroidal thickness in patients with unilateral branch retinal vein occlusion
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sectoral changes of the peripapillary choroidal thickness in patients with unilateral branch retinal vein occlusion
  • 作者:Na ; Eun ; Lee ; Hae ; Min ; Kang ; Jeong ; Hoon ; Choi ; Hyoung ; Jun ; Koh ; Sung ; Chul ; Lee
  • 英文作者:Na Eun Lee;Hae Min Kang;Jeong Hoon Choi;Hyoung Jun Koh;Sung Chul Lee;Department of Ophthalmology, Catholic Kwandong University College of Medicine, International St. Mary's Hospital;Choikang Seoul Eye Clinic;Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine;
  • 英文关键词:branch retinal vein occlusion;;choroid;;choroidal thickness;;peripapillary choroidal thickness
  • 中文刊名:GYZZ
  • 英文刊名:国际眼科杂志(英文版)
  • 机构:Department of Ophthalmology, Catholic Kwandong University College of Medicine, International St. Mary's Hospital;Choikang Seoul Eye Clinic;Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine;
  • 出版日期:2019-03-13 15:19
  • 出版单位:International Journal of Ophthalmology
  • 年:2019
  • 期:v.12
  • 基金:Supported by the National Research Foundationof Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2018R1C1B5085620)
  • 语种:英文;
  • 页:GYZZ201903019
  • 页数:8
  • CN:03
  • 分类号:126-133
摘要
AIM: To investigate sectoral changes in the mean peripapillary choroidal thickness(PCT) in patients with unilateral branch retinal vein occlusion(BRVO). METHODS: This retrospective, interventional study included 41 patients with acute, unilateral BRVO without macular edema. All patients completed at least a 6-month follow-up period. The PCT was measured at eight locations(temporal, superotemporal, superior, superonasal, nasal, inferonasal, inferior, and inferotemporal). In addition to calculating the average of all locations, the peripapillary choroidal area was divided into four sectors: superior(average of superotemporal PCT, superior PCT, and superonasal PCT), temporal, inferior(average of inferotemporal PCT, inferior PCT, and inferonasal PCT), and nasal. RESULTS: In the BRVO-affected eyes, the mean PCT was 177.7±69.8 μm(range, 70.1-396.0 μm) at baseline and 127.8±54.8 μm(range, 56.4-312.1 μm) at 6 mo(P<0.001). In the non-affected contralateral eyes, the mean PCT was 192.5±60.6 μm(range, 61.4-365.0 μm) at baseline and 165.9±61.1 μm(range, 56.8-326.8 μm) at 6 mo(P<0.001). In sectoral analysis, the mean PCT in each sector was significantly reduced in over 6 mo in the BRVO-affected eyes(all P<0.001). In the non-affected contralateral eyes, the mean PCT was not significantly changed in any sector over the 6-month follow-up period(superior sector, P=0.143; temporal sector, P=0.825; inferior sector, P=0.192; and nasal sector, P=0.599).CONCLUSION: Sectoral analysis shows that the mean PCTs in all sectors are reduced significantly over 6 mo in the BRVO-affected eyes, but not in the non-affected contralateral eyes.
        AIM: To investigate sectoral changes in the mean peripapillary choroidal thickness(PCT) in patients with unilateral branch retinal vein occlusion(BRVO). METHODS: This retrospective, interventional study included 41 patients with acute, unilateral BRVO without macular edema. All patients completed at least a 6-month follow-up period. The PCT was measured at eight locations(temporal, superotemporal, superior, superonasal, nasal, inferonasal, inferior, and inferotemporal). In addition to calculating the average of all locations, the peripapillary choroidal area was divided into four sectors: superior(average of superotemporal PCT, superior PCT, and superonasal PCT), temporal, inferior(average of inferotemporal PCT, inferior PCT, and inferonasal PCT), and nasal. RESULTS: In the BRVO-affected eyes, the mean PCT was 177.7±69.8 μm(range, 70.1-396.0 μm) at baseline and 127.8±54.8 μm(range, 56.4-312.1 μm) at 6 mo(P<0.001). In the non-affected contralateral eyes, the mean PCT was 192.5±60.6 μm(range, 61.4-365.0 μm) at baseline and 165.9±61.1 μm(range, 56.8-326.8 μm) at 6 mo(P<0.001). In sectoral analysis, the mean PCT in each sector was significantly reduced in over 6 mo in the BRVO-affected eyes(all P<0.001). In the non-affected contralateral eyes, the mean PCT was not significantly changed in any sector over the 6-month follow-up period(superior sector, P=0.143; temporal sector, P=0.825; inferior sector, P=0.192; and nasal sector, P=0.599).CONCLUSION: Sectoral analysis shows that the mean PCTs in all sectors are reduced significantly over 6 mo in the BRVO-affected eyes, but not in the non-affected contralateral eyes.
引文
1 Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion.A randomized clinical trial.Branch Vein Occlusion Study Group.Arch Ophthalmol 1986;104(1):34-41.
    2 Klein R,Moss SE,Meuer SM,Klein BE.The 15-year cumulative incidence of retinal vein occlusion:the Beaver Dam Eye Study.Arch Ophthalmol 2008;126(4):513-518.
    3 Bowers DK,Finkelstein D,Wolff SM,Green WR.Branch retinal vein occlusion.A clinicopathologic case report.Retina 1987;7(4):252-259.
    4 Frangieh GT,Green WR,Barraquer-Somers E,Finkelstein D.Histopathologic study of nine branch retinal vein occlusions.Arch Ophthalmol 1982;100(7):1132-1140.
    5 Sperduto RD,Hiller R,Chew E,Seigel D,Blair N,Burton TC,Farber MD,Gragoudas ES,Haller J,Seddon JM,Yannuzzi LA.Risk factors for hemiretinal vein occlusion:comparison with risk factors for central and branch retinal vein occlusion:the eye disease case-control study.Ophthalmology 1998;105(5):765-771.
    6 Rath EZ,Frank RN,Shin DH,Kim C.Risk factors for retinal vein occlusions.A case-control study.Ophthalmology 1992;99(4):509-514.
    7 Jaulim A,Ahmed B,Khanam T,Chatziralli IP.Branch retinal vein occlusion:epidemiology,pathogenesis,risk factors,clinical features,diagnosis,and complications.An update of the literature.Retina2013;33(5):901-910.
    8 The Eye Disease Case-control Study Group.Risk factors for branch retinal vein occlusion.Am J Ophthalmol1993;116(3):286-296.
    9 Vannas S,Tarkkanen A.Retinal vein occlusion and glaucoma.Tonographic study of the incidence of glaucoma and of its prognostic significance.Br J Ophthalmol 1960;44:583-589.
    10 Beaumont PE,Kang HK.Cup-to-disc ratio,intraocular pressure,and primary open-angle glaucoma in retinal venous occlusion.Ophthalmology2002;109(2):282-286.
    11 Bucciarelli P,Passamonti SM,Gianniello F,Artoni A,Martinelli I.Thrombophilic and cardiovascular risk factors for retinal vein occlusion.Eur J Intern Med 2017;44:44-48.
    12 Frucht J,Shapiro A,Merin S.Intraocular pressure in retinal vein occlusion.Br J Ophthalmol 1984;68(1):26-28.
    13 Wang Y,Fawzi AA,Varma R,Sadun AA,Zhang X,Tan O,Izatt JA,Huang D.Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases.Invest Ophthalmol Vis Sci 2011;52(2):840-845.
    14 Son Y,Lee S,Park J.Measurement of lamina and prelaminar thicknesses of both eyes in patients with unilateral branch retinal vein occlusion.Graefes Arch Clin Exp Ophthalmol 2017;255(3):503-508.
    15 Kang HM,Choi JH,Koh HJ,Lee CS,Lee SC.Significant reduction of peripapillary choroidal thickness in patients with unilateral branch retinal vein occlusion.Retina 2018;38(1):72-78.
    16 Lopilly Park HY,Jeon S,Lee MY,Park CK.Glaucoma progression in the unaffected fellow eye of glaucoma patients who developed unilateral branch retinal vein occlusion.Am J Ophthalmol 2017;175:194-200.
    17 Kim KH,Lee DH,Lee JJ,Park SW,Byon IS,Lee JE.Regional choroidal thickness changes in branch retinal vein occlusion with macular edema.Ophthalmologica 2015;234(2):109-118.
    18 Forte R,Cennamo G,Breve MA,Vecchio EC,de Crecchio G.Functional and anatomic response of the retina and the choroid to intravitreal bevacizumab for macular edema.J Ocul Pharmacol Ther 2012;28(1):69-75.
    19 Lee EK,Han JM,Hyon JY,Yu HG.Changes in choroidal thickness after intravitreal dexamethasone implant injection in retinal vein occlusion.Br J Ophthalmol 2015;99(11):1543-1549.
    20 Yumusak E,Ornek K,Dikel NH.Comparison of choroidal thickness changes following intravitreal dexamethasone,ranibizumab,and triamcinolone in eyes with retinal vein occlusion.Eur J Ophthalmol2016;26(6):627-632.
    21 Jiang R,Wang YX,Wei WB,Xu L,Jonas JB.Peripapillary choroidal thickness in adult Chinese:the Beijing Eye Study.Invest Ophthalmol Vis Sci 2015;56(6):4045-4052.
    22 Gupta P,Cheung CY,Baskaran M,Tian J,Marziliano P,Lamoureux EL,Cheung CM,Aung T,Wong TY,Cheng CY.Relationship between peripapillary choroid and retinal nerve fiber layer thickness in a population-based sample of nonglaucomatous eyes.Am J Ophthalmol2016;161:4-11.e1-2.
    23 Zhao D,Cho J,Kim MH,Friedman DS,Guallar E.Diabetes,fasting glucose,and the risk of glaucoma:a meta-analysis.Ophthalmology2015;122(1):72-78.
    24 Zhou M,Wang W,Huang W,Zhang X.Diabetes mellitus as a risk factor for open-angle glaucoma:a systematic review and meta-analysis.PLo S One 2014;9(8):e102972.
    25 Lockwood A,Clearkin LG.Insulin resistance in retinal vein occlusion and glaucoma.Lancet 1992;340(8827):1100-1101.
    26 Bae HW,Lee N,Lee HS,Hong S,Seong GJ,Kim CY.Systemic hypertension as a risk factor for open-angle glaucoma:a meta-analysis of population-based studies.PLo S One 2014;9(9):e108226.
    27 Bonomi L,Marchini G,Marraffa M,Bernardi P,Morbio R,Varotto A.Vascular risk factors for primary open angle glaucoma:the EgnaNeumarkt Study.Ophthalmology 2000;107(7):1287-1293.
    28 Krakau CE.Disk hemorrhages and retinal vein occlusions in glaucoma.Surv Ophthalmol 1994;38(Suppl):S18-S21;discussion S22.
    29 Sonnsj?B.Similarities between disc haemorrhages and thromboses of the retinal veins.Int Ophthalmol 1992;16(4-5):235-238.
    30 Sonnsj?B,Dokmo Y,Krakau T.Disc haemorrhages,precursors of open angle glaucoma.Prog Retin Eye Res 2002;21(1):35-56.
    31 Vujosevic S,Martini F,Cavarzeran F,Pilotto E,Midena E.Macular and peripapillary choroidal thickness in diabetic patients.Retina2012;32(9):1781-1790.
    32 Kang HM,Lee NE,Choi JH,Koh HJ,Lee SC.Significant reduction of both peripapillary and subfoveal choroidal thickness after panretinal photocoagulation in patients with type 2 diabetes.Retina2018;38(10):1905-1912.
    33 Tilton RG,Chang KC,LeJeune WS,Stephan CC,Brock TA,Williamson JR.Role for nitric oxide in the hyperpermeability and hemodynamic changes induced by intravenous VEGF.Invest Ophthalmol Vis Sci 1999;40(3):689-696.
    34 Ferrara N.Vascular endothelial growth factor:molecular and biological aspects.Curr Top Microbiol Immunol 1999;237:1-30.
    35 Noma H,Minamoto A,Funatsu H,Tsukamoto H,Nakano K,Yamashita H,Mishima HK.Intravitreal levels of vascular endothelial growth factor and interleukin-6 are correlated with macular edema in branch retinal vein occlusion.Graefes Arch Clin Exp Ophthalmol2006;244(3):309-315.
    36 Aiello LP,Northrup JM,Keyt BA,Takagi H,Iwamoto MA.Hypoxic regulation of vascular endothelial growth factor in retinal cells.Arch Ophthalmol 1995;113(12):1538-1544.
    37 Ebneter A,Kokona D,Schneider N,Zinkernagel MS.Microglia activation and recruitment of circulating macrophages during ischemic experimental branch retinal vein occlusion.Invest Ophthalmol Vis Sci2017;58(2):944-953.
    38 Flammer J,Orgül S,Costa VP,Orzalesi N,Krieglstein GK,Serra LM,Renard JP,Stefánsson E.The impact of ocular blood flow in glaucoma.Prog Retin Eye Res 2002;21(4):359-393.
    39 Blumenthal M,Best M,Galin MA,Toyofuku H.Peripapillary choroidal circulation in glaucoma.Arch Ophthalmol 1971;86(1):31-38.
    40 Banitt M.The choroid in glaucoma.Curr Opin Ophthalmol2013;24(2):125-129.
    41 Geijssen HC,Greve EL.Vascular concepts in glaucoma.Curr Opin Ophthalmol 1995;6(2):71-77.
    42 Duijm HF,van den Berg TJ,Greve EL.Choroidal haemodynamics in glaucoma.Br J Ophthalmol 1997;81(9):735-742.
    43 Wolf S,Arend O,Sponsel WE,Schulte K,Cantor LB,Reim M.Retinal hemodynamics using scanning laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma.Ophthalmology 1993;100(10):1561-1566.
    44 Grunwald JE,Piltz J,Hariprasad SM,DuPont J.Optic nerve and choroidal circulation in glaucoma.Invest Ophthalmol Vis Sci 1998;39(12):2329-2336.
    45 Galassi F,Sodi A,Ucci F,Renieri G,Pieri B,Baccini M.Ocular hemodynamics and glaucoma prognosis:a color Doppler imaging study.Arch Ophthalmol 2003;121(12):1711-1715.
    46 Nicolela MT,Hnik P,Drance SM.Scanning laser Doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients.Am JOphthalmol 1996;122(6):775-783.
    47 Park HY,Lee NY,Shin HY,Park CK.Analysis of macular and peripapillary choroidal thickness in glaucoma patients by enhanced depth imaging optical coherence tomography.J Glaucoma 2014;23(4):225-231.
    48 Hirooka K,Tenkumo K,Fujiwara A,Baba T,Sato S,Shiraga F.Evaluation of peripapillary choroidal thickness in patients with normaltension glaucoma.BMC Ophthalmol 2012;12:29.
    49 Usui S,Ikuno Y,Miki A,Matsushita K,Yasuno Y,Nishida K.Evaluation of the choroidal thickness using high-penetration optical coherence tomography with long wavelength in highly myopic normaltension glaucoma.Am J Ophthalmol 2012;153(1):10-16.e1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700