用户名: 密码: 验证码:
A coupled convolutional neural network for small and densely clustered ship detection in SAR images
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A coupled convolutional neural network for small and densely clustered ship detection in SAR images
  • 作者:Juanping ; ZHAO ; Weiwei ; GUO ; Zenghui ; ZHANG ; Wenxian ; YU
  • 英文作者:Juanping ZHAO;Weiwei GUO;Zenghui ZHANG;Wenxian YU;Shanghai Key Laboratory of Intelligent Sensing and Recognition, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University;
  • 英文关键词:SAR image;;ship detection;;CNN;;exhaustive ship proposal network(ESPN);;accurate ship discrimination network(ASDN)
  • 中文刊名:JFXG
  • 英文刊名:中国科学:信息科学(英文版)
  • 机构:Shanghai Key Laboratory of Intelligent Sensing and Recognition, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University;
  • 出版日期:2018-09-20 14:37
  • 出版单位:Science China(Information Sciences)
  • 年:2019
  • 期:v.62
  • 基金:supported by National Natural Science Foundation of China (Grant No. 61331015);; China Postdoctoral Science Foundation (Grant No. 2015M581618)
  • 语种:英文;
  • 页:JFXG201904013
  • 页数:16
  • CN:04
  • ISSN:11-5847/TP
  • 分类号:111-126
摘要
Ship detection from synthetic aperture radar(SAR) imagery plays a significant role in global marine surveillance. However, a desirable performance is rarely achieved when detecting small and densely clustered ship targets, and this problem is difficult to solve. Recently, convolutional neural networks(CNNs)have shown strong detection power in computer vision and are flexible in complex background conditions,whereas traditional methods have limited ability. However, CNNs struggle to detect small targets and densely clustered ones that exist widely in many SAR images. To address this problem while preserving the good properties for complex background conditions, we develop a coupled CNN for small and densely clustered SAR ship detection. The proposed method mainly consists of two subnetworks: an exhaustive ship proposal network(ESPN) for ship-like region generation from multiple layers with multiple receptive fields, and an accurate ship discrimination network(ASDN) for false alarm elimination by referring to the context information of each proposal generated by ESPN. The motivation in ESPN is to generate as many ship proposals as possible, and in ASDN, the goal is to obtain the final results accurately. Experiments are evaluated on two data sets. One is collected from 60 wide-swath Sentinel-1 images and the other is from20 GaoF en-3(GF-3) images. Both data sets contain many ships that are small and densely clustered. The quantitative comparison results illustrate the clear improvements of the new method in terms of average precision(AP) and F 1 score by 0.4028 and 0.3045 for the Sentinel-1 data set compared with the multi-step constant false alarm rate(CFAR-MS) method. The values are verified as 0.2033 and 0.1522 for the GF-3 data set. In addition, the new method is demonstrated to be more efficient than CFAR-MS.
        Ship detection from synthetic aperture radar(SAR) imagery plays a significant role in global marine surveillance. However, a desirable performance is rarely achieved when detecting small and densely clustered ship targets, and this problem is difficult to solve. Recently, convolutional neural networks(CNNs)have shown strong detection power in computer vision and are flexible in complex background conditions,whereas traditional methods have limited ability. However, CNNs struggle to detect small targets and densely clustered ones that exist widely in many SAR images. To address this problem while preserving the good properties for complex background conditions, we develop a coupled CNN for small and densely clustered SAR ship detection. The proposed method mainly consists of two subnetworks: an exhaustive ship proposal network(ESPN) for ship-like region generation from multiple layers with multiple receptive fields, and an accurate ship discrimination network(ASDN) for false alarm elimination by referring to the context information of each proposal generated by ESPN. The motivation in ESPN is to generate as many ship proposals as possible, and in ASDN, the goal is to obtain the final results accurately. Experiments are evaluated on two data sets. One is collected from 60 wide-swath Sentinel-1 images and the other is from20 GaoF en-3(GF-3) images. Both data sets contain many ships that are small and densely clustered. The quantitative comparison results illustrate the clear improvements of the new method in terms of average precision(AP) and F 1 score by 0.4028 and 0.3045 for the Sentinel-1 data set compared with the multi-step constant false alarm rate(CFAR-MS) method. The values are verified as 0.2033 and 0.1522 for the GF-3 data set. In addition, the new method is demonstrated to be more efficient than CFAR-MS.
引文
1 Wang S G,Wang M,Yang S Y,et al.New hierarchical saliency filtering for fast ship detection in high-resolution SARimages.IEEE Trans Geosci Remote Sens,2017,55:351-362
    2 Gao G,Shi G T.CFAR ship detection in nonhomogeneous sea clutter using polarimetric SAR data based on the notch filter.IEEE Trans Geosci Remote Sens,2017,55:4811-4824
    3 Zeng T,Zhang T,Tian W M,et al.A novel subsidence monitoring technique based on space-surface bistatic differential interferometry using GNSS as transmitters.Sci China Inf Sci,2015,58:062304
    4 Ma L,Chen L,Zhang X J,et al.A waterborne salient ship detection method on SAR imagery.Sci China Inf Sci,2015,58:089301
    5 Crisp D.The state-of-the-art in ship detection in synthetic aperture radar imagery.Org Lett,2004,35:2165-2168
    6 Wackerman C C,Friedman K S,Pichel W G,et al.Automatic detection of ships in RADARSAT-1 SAR imagery.Canadian J Remote Sens,2001,27:568-577
    7 Ferrara M N,Torre A.Automatic moving targets detection using a rule-based system:comparison between different study cases.In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium Proceedings,Seattle,1998.1593-1595
    8 Wang C L,Bi F K,Zhang W P,et al.An intensity-space domain CFAR method for ship detection in HR SAR images.IEEE Geosci Remote Sens Lett,2017,14:529-533
    9 Bi H,Zhang B,Zhu X X,et al.L1-regularization-based SAR imaging and CFAR detection via complex approximated message passing.IEEE Trans Geosci Remote Sens,2017,55:3426-3440
    10 Iervolino P,Guida R,Whittaker P.A novel ship-detection technique for Sentinel-1 SAR data.In:Proceedings of the5th Asia-Pacific Conference on Synthetic Aperture Radar,Singapore,2015.797-801
    11 Feng J,Ma L,Bi F K,et al.A coarse-to-fine image registration method based on visual attention model.Sci China Inf Sci,2014,57:122302
    12 Wu X M,Du M N,Chen W H,et al.Salient object detection via region contrast and graph regularization.Sci China Inf Sci,2016,59:032104
    13 Krizhevsky A,Sutskever I,Hinton G E.Imagenet classification with deep convolutional neural networks.In:Proceedings of the 25th International Conference on Neural Information Processing Systems,Lake Tahoe,2012.1097-1105
    14 Ren S,He K,Girshick R,et al.Faster R-CNN:towards real-time object detection with region proposal networks.IEEE Trans Pattern Anal Mach Intel,2017,39:1137-1149
    15 Dai J F,Li Y,He K M,et al.R-FCN:object detection via region-based fully convolutional networks.In:Proceedings of the 30th Conference on Neural Information Processing Systems,Barcelona,2016.379-387
    16 Bell S,Zitnick C L,Bala K,et al.Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016.2874-2883
    17 Li X,Zhao L M,Wei L N,et al.DeepSaliency:multi-task deep neural network model for salient object detection.IEEE Trans Image Process,2016,25:3919-3930
    18 Girshick R.Fast R-CNN.In:Proceedings of the IEEE International Conference on Computer Vision,Santiago,2015.1440-1448
    19 Liu W,Anguelov D,Erhan D,et al.SSD:single shot multibox detector.In:Proceedings of European Conference on Computer Vision,Amsterdam,2016.21-37
    20 Cai Z W,Fan Q F,Feris R S,et al.A unified multi-scale deep convolutional neural network for fast object detection.In:Proceedings of European Conference on Computer Vision,Amsterdam,2016.354-370
    21 Lin T Y,Dollar P,Girshick R,et al.Feature pyramid networks for object detection.In:Proceedings of IEEEConference on Computer Vision and Pattern Recognition,Honolulu,2017.936-944
    22 Xiang Y,Choi W,Lin Y Q,et al.Subcategory-aware convolutional neural networks for object proposals and detection.In:Proceedings of IEEE Winter Conference on Applications of Computer Vision,Santa Rosa,2017.924-933
    23 Zhai L,Li Y,Su Y.Inshore ship detection via saliency and context information in high-resolution SAR images.IEEEGeosci Remote Sens Lett,2016,13:1870-1874
    24 Zhu J W,Qiu X L,Pan Z X,et al.An improved shape contexts based ship classification in SAR images.Remote Sens,2017,9:145
    25 Schmidhuber J.Deep learning in neural networks:an overview.Neur Netw,2015,61:85-117
    26 Simonyan K,Zisserman A.Very deep convolutional networks for large-scale image recognition.2014.ArXiv:1409.1556
    27 Girshick R,Donahue J,Darrell T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014.580-587
    28 Bottou L.Large-scale machine learning with stochastic gradient descent.In:Proceedings of the 19th International Conference on Computational Statistics,Paris,2010.177-186
    29 Neubeck A,van Gool L.Efficient non-maximum suppression.In:Proceedings of the 18th International Conference on Pattern Recognition,Hong Kong,2006
    30 Jia Y Q,Shelhamer E,Donahue J,et al.Caffe:convolutional architecture for fast feature embedding.In:Proceedings of the 22nd ACM International Conference on Multimedia,Orlando,2014.675-678
    31 Zuhlke M,Fomferra N,Brockmann C,et al.SNAP(sentinel application platform)and the ESA Sentinel-3 Toolbox.In:Proceedings of Sentinel-3 for Science Workshop,Venice,2015
    32 Pan Z X,Liu L,Qiu X L,et al.Fast vessel detection in Gaofen-3 SAR images with ultrafine strip-map mode.Sensors,2017,17:1578
    33 Philbin J,Chum O,Isard M,et al.Object retrieval with large vocabularies and fast spatial matching.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Minneapolis,2007
    34 Flach P,Kull M.Precision-recall-gain curves:PR analysis done right.In:Proceedings of the 28th International Conference on Neural Information Processing Systems,Montreal,2015.838-846
    35 Qin X X,Zhou S L,Zou H X,et al.A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images.IEEE Geosci Remote Sens Lett,2013,10:806-810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700