用户名: 密码: 验证码:
Zr_(48)Cu_(36)Ag_8Al_8合金纳米材料的晶界扩散行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Grain boundary diffusion behavior of Zr_(48)Cu_(36)Ag_8Al_8 alloy nanomaterial
  • 作者:孙琳琳 ; 王军 ; 孟培媛 ; 乔勋 ; 宁可
  • 英文作者:Sun Linlin;Wang Jun;Meng Peiyuan;Qiao Xun;Ning Ke;College of Mechanical Engineering,Xijing University;State Key Laboratory of Solidification Processing,Northwestern Polytechnical University;
  • 关键词:纳米材料 ; Arrhenius规则 ; 晶界扩散系数 ; 晶界
  • 英文关键词:nanomaterial;;Arrhenius rule;;grain boundary diffusion coeffcient;;grain boundary
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:西京学院机械工程学院;西北工业大学凝固技术国家重点实验室;
  • 出版日期:2018-07-25
  • 出版单位:金属热处理
  • 年:2018
  • 期:v.43;No.491
  • 基金:陕西省教育厅科研计划(17JK1156);; 西京学院科研基金(XJ160223)
  • 语种:中文;
  • 页:JSRC201807014
  • 页数:4
  • CN:07
  • ISSN:11-1860/TG
  • 分类号:52-55
摘要
通过对Zr_(48)Cu_(36)Ag_8Al_8非晶合金在过冷液相区等温热处理的方法制备了纳米材料,采用磁控溅射法获得了Ni/Zr_(48)Cu_(36)Ag_8Al_8纳米材料扩散偶,利用二次离子质谱法研究了Ni原子在纳米材料晶界原子扩散机制。结果表明:在703~723 K温度范围内,α与β参数均满足B类型区域扩散特点。根据Suzuoka方程解可以获得晶界扩散系数δD_(gb)与温度之间的关系曲线,通过拟合发现:晶界扩散系数δD_(gb)服从Arrhenius规则,同时Ni原子在两种纳米材料晶界处的扩散激活能均呈现出相同值,即Q_(gb)≈1.433 e V。该结果说明不同状态纳米材料可能具有相似的微结构;此外,由于通过等温退火法获得的纳米材料中存在三叉晶界,内部可能存在一定数量的准空位,当外界提供能量时,外来原子可能通过原子跳跃以及多原子方式进行运动,从而降低整个体系的Gibbs自由能。同时与粗晶态合金相比,也进一步证实了晶态材料的原子扩散行为主要取决于晶界数量及拓扑结构。
        Zr_(48)Cu_(36)Ag_8Al_8nanomaterial was prepared by isothermal annnealing of the Zr_(48)Cu_(36)Ag_8Al_8bulk metallic glass in the supercooled liquid region.Then,Ni/Zr_(48)Cu_(36)Ag_8Al_8nanomaterial diffusion couple was obtained by using magnetron sputtering.The mechanism of Ni atoms in grain boundary diffusion of Zr_(48)Cu_(36)Ag_8Al_8nanomaterials was analyzed by using secondary ion mass spectrum(SIMS).The results show thatαandβboth meet diffusion feature of the B type area in the temperature range of 703-723 K.According to Suzuoka solution of equation,the relation curve between grain boundary diffusion coefficientδD_(gb)and diffusion temperature is fitted calculation.Grain boundary diffusion coeffcientδD_(gb)obeys the rules of the Arrhenius,and the activation energy of grain boundary diffusion in two kinds of nanomaterials is approximately equal(Q_(gb)≈1.433 e V).This phenomenon indicates that different state nanomaterials may have similar microstructure.In addition,a certain amount of space exists in the trigeminal grain boundary of nanomaterials obtained by the isothermal annealing method when there is an external energy function.So atoms will jump by single atom and more atoms cooperative movement,thereby reduce the Gibbs free energy of the whole system.It is also proved that the atomic diffusion behavior of the crystalline material is mainly dependent on the number of grain and the topological structure by compared with diffusion behaviors of the coarse grain.
引文
[1]王健,韩寅奔,张铁邦,等.Ni-20Cr-18W基高温合金热轧组织演变和力学性能[J].稀有金属材料与工程,2014,43(12):3018-3021.Wang Jian,Han Yinben,Zhang Tiebang,et al.Microstructure evolution and mechanical properties of as-rolled Ni-20Cr-18W base superalloy[J].Rare Metal Materials and Engineering,2014,43(12):3018-3021.
    [2]赵新宝,刘林,杨初斌,等.镍基单晶高温合金凝固缺陷研究进展[J].材料工程,2012(1):93-98.Zhao Xinbao,Liu Lin,Yang Chubin,et al.Advance in research of casting defects of directionally solidified nickel-based single superalloys[J].Journal of Materials Engineering,2012(1):93-98.
    [3]潘金生,田民波,仝健民.材料科学基础[M].北京:清华大学出版社,2011:470-473.
    [4]Mehrer H.Diffusion in Solids:Fundamentals,Methods,Materials,Diffusion-Controlled Processes[M].Springer Science and Business Media,2007.
    [5]Z9llmer V,Rtzke K,Faupel F,et al.Diffusion in a metallic melt at the critical temperature of mode coupling theory[J].Physical Review Letters,2003,90:195502.
    [6]Chathoth S M,Samwer K.Stokers-Einstein relation in dense metallic glass-forming melts[J].Applied Physics Letters,2010,97:221910.
    [7]Lu K,Lück R,Predel B.The temperature vs time transformation(T-TT)diagram for a transition from the amorphous to the nanocrystalline state[J].Acta Metallurgica Et Materialia,1994,42:2303-2311.
    [8]Sun Linlin,Wang Jun,Kou Hongchao,et al.Relationship between grain boundary diffusion in nanocrystals and amorphous microstructure[J].Surface and Interface Analysis,2016,48(12):1341-1344.
    [9]Bernardini J.Grain boundary diffusion in metallic nano and polycrystals[J].Interface Science,1997,5(1):54-62.
    [10]Divinski S,Hisker F,Kang Y S,et al.59Fe grain boundary diffusion in nanostructuredγ-Fe-Ni:Part I:radiotracer experiments and montecarlo simulation in the type-A and B kinetic pegimes[J].Zeitschrift für Metallkunde,2002,93:256-264.
    [11]Leclaire A D.The analysis of grain boundary diffusion measurements[J].British Journal of Applied Physics,1963,14(6):351.
    [12]Belova I,Murch G.Analysis of kinetics regimes in grain boundary self-diffusion[J].Philosophical Magazine,2009,89:665-675.
    [13]Sun L L,Wang J,Kou H C,et al.Diffusion behavior of Ni in Zr48Cu36Ag8Al8bulk metallic glass within the supercooled liquid region[J].Transactions of Nonferrous Metals Society of China,2015,2:1171-1175.
    [14]Bachurin D,Nazarov A,Shenderova O,et al.Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials[J].Materials Science and Engineering A,2003,359:247-252.
    [15]Kang Y S,Lee J S,Divinski S V,et al.Ni grain boundary diffusion in coarse-grained Fe-40wt.%Ni alloy and comparison with Ni diffusion in the nanocrystalline alloy[J].Zeitschrift Für Metallkunde,2013,95(2):76-79.
    [16]Wunderlich W,Ishida Y,Maurer R.HREM-studies of the microstructure of nanocrystalline palladium[J].Scripta Metallurgica Et Materiala,1990,24(2):403-408.
    [17]Fisher J C.Calculation of diffusion penetration curves for surface and grain boundary diffusion[J].Journal of Applied Physics,1951,22(1):74-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700