用户名: 密码: 验证码:
316L表面激光熔覆复合微弧氧化制备陶瓷涂层
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ceramic Coating Prepared by Laser Cladding and Composite Micro-arc Oxidation on 316L Surface
  • 作者:孙敏 ; 吴国龙 ; 王晔 ; 张群莉 ; 姚建华 ; Volodymyr ; S.Kovalenko
  • 英文作者:SUN Min;WU Guo-long;WANG Ye;ZHANG Qun-li;YAO Jian-hua;Volodymyr S.Kovalenko;Institute of Laser Advanced Manufacturing, Zhejiang University of Technology;Zhejiang Provincial Collaboration Innovation Center of High-end Laser Manufacturing Equipment;Laser Technology Research Institute, National Technical University of Ukraine;
  • 关键词:316L ; 激光熔覆 ; 微弧氧化 ; 生物活性 ; 耐蚀性
  • 英文关键词:316L;;laser cladding;;micro-arc oxidation;;bioactivity;;corrosion resistance
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:浙江工业大学激光先进制造研究院;浙江省高端激光制造装备协同创新中心;乌克兰国立科技大学激光技术研究所;
  • 出版日期:2019-02-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(51605441);; 浙江省自然科学基金青年基金(LQ16E010004);; 高等学校学科创新引智计划资助(110000213920168001)~~
  • 语种:中文;
  • 页:BMJS201902005
  • 页数:9
  • CN:02
  • ISSN:50-1083/TG
  • 分类号:34-42
摘要
目的提高316L不锈钢表面的耐蚀性和生物活性。方法首先采用激光熔覆技术在316L不锈钢表面制备钛层,然后对钛层表面进行微弧氧化处理,从而在316L不锈钢表面制备出含有Ca、P元素的多孔状陶瓷涂层。利用扫描电子显微镜(Scanning Electron Microscope,SEM)、能谱仪(Energy Dispersive Spectrometer,EDS)、X射线衍射仪(X-Ray Diffraction,XRD)分析了钛层厚度对陶瓷涂层的表面显微形貌、元素含量及物相组成的影响。利用电化学实验、浸泡实验分别测试了涂层在1.5倍SBF溶液中的耐蚀性能和生物活性。结果通过激光熔覆复合微弧氧化能够在316L不锈钢表面制备出多孔状陶瓷涂层。随着钛层厚度的增加,微弧氧化原位生成的陶瓷涂层致密度、厚度也增加。当钛层厚度达到0.4 mm时,微弧氧化后得到的陶瓷涂层完整致密,厚度达到20μm。涂层主要由锐钛矿相Ti O2、金红石相Ti O2组成。极化曲线分析可知,腐蚀电位Ecorr为-0.162 V,腐蚀电流密度降至5.11×10-7 A/cm2。陶瓷涂层在1.5倍SBF中浸泡3天后表面即有羟基磷灰石沉积。结论通过激光熔覆复合微弧氧化在316L不锈钢表面制备的陶瓷涂层在模拟体液环境下具有较好的耐蚀性能,同时也具备良好的生物活性。
        The work aims to improve the corrosion resistance and bioactivity of 316 L stainless steel surface. The titanium coating was prepared on 316 L by laser cladding, and then the micro-arc oxidation was carried out on the surface of the titanium layer. Therefore, porous ceramic coating containing Ca and P was prepared on the surface of 316 L. The influence of the thickness oftitanium layer on the surface morphology, element content and phase composition of ceramic coating was analyzed by SEM(Scanning Electron Microscope), EDS(Energy Dispersive Spectrometer) and XRD(X-Ray Diffraction). The corrosion resistance and bioactivity of the coating in 1.5× SBF solution were tested by electrochemical tests and immersion tests. Porous ceramic coating was prepared on 316 L stainless steel by laser cladding and composite micro arc oxidation. The density and thickness of ceramic coating in situ formed by micro-arc oxidation increased with increase of the thickness of titanium layer. When the thickness of titanium layer reached 0.4 mm, the ceramic coating prepared by micro-arc oxidation was dense and the thickness of the dense coating reached 20 μm. The coating mainly consisted of anatase phase and rutile phase. From the polarization curve, the corrosion potential Ecorr was-0.162 V and the corrosion current density decreased to 5.11×10-7 A/cm2. After immersion in 1.5 times of SBF for 3 days, hydroxyapatite was observed on the surface of the ceramic coating. The ceramic coating prepared by laser cladding combined with micro-arc oxidation on 316 L surface has excellent corrosion resistance in simulated body fluid, and can effectively improve the bioactivity of 316 L stainless steel.
引文
[1]SUTHA S,KARUNAKARAN G,RAJENDRAN V,et al.Enhancement of antimicrobial and long-term biostability of the zinc-incorporated hydroxyapatite coated 316Lstainless steel implant for biomedical application[J].Ceramics international,2013,39:5205-5212.
    [2]DISEGI J A,ESCHBACH L.Stainless steel in bone surgery[J].Injury,2000,31:2-6.
    [3]STEINEMANN S G.Metal implants and surface reactions[J].Injury,1996,27:16-22.
    [4]杨柯,任伊宾.医用不锈钢的研究与发展[J].中国材料进展,2010,29(12):1-10.YANG Ke,REN Yi-bin.Research and development of medical stainless steels[J].Material China,2010,29(12):1-10.
    [5]孙建华,刘金龙,王庆良,等.医用316L不锈钢表面改性的研究进展[J].材料导报,2011,25(9):95-99.SUN Jian-hua,LIU Jin-long,WANG Qing-liang,et al.Research progress in surface modification of biomedical316L stainless steel[J].Materials review,2011,25(9):95-99.
    [6]王丹宁,赵宝红.钛种植体表面微弧氧化技术研究进展[J].中国实用口腔科杂志,2010,3(9):570-574.WANG Dan-ning,ZHAO Bao-hong.Research progress of micro arc oxidation technology on titanium implant surface[J].Chinese journal of practical stomatology,2010,3(9):570-574.
    [7]周睿.纯钛微弧氧化陶瓷涂层结构调控及生物学性能[D].哈尔滨:哈尔滨工业大学,2015.ZHOU Rui.Structural modification and biological performance of ceramic coatings on pure titanium by microarc oxidation[D].Harbin:Harbin Institute of Technology,2015.
    [8]朱康平,祝建雯,曲恒磊.国外生物医用钛合金的发展现状[J].稀有金属材料与工程,2012,41(11):2058-2063.ZHU Kang-ping,ZHU Jian-wen,QU Heng-lei.Development status of biomedical titanium alloys abroad[J].Materials research and application,2012,41(11):2058-2063.
    [9]杨文军,肖乾,梁军,等.碳钢表面微弧氧化膜的制备及摩擦磨损性能研究[J].摩擦学学报,2015,35(3):328-334.YANG Wen-jun,XIAO Qian,LIANG Jun,et al.Preparation and tribological properties of plasma electrolyticoxidation coatings on carbon steel[J].Tribology,2015,35(3):328-334.
    [10]任鑫明,马北越,张博文,等.钛合金及钢表面激光熔覆涂层的研究进展[J].材料研究与应用,2017,11(3):141-146.REN Xin-ming,MA Bei-yue,ZHANG Bo-wen,et al.Research progress of laser cladding coating on titanium alloy and steel surface[J].Materials research and application,2017,11(3):141-146.
    [11]王永钱,江旭东,潘春旭.钛及钛合金表面微弧氧化技术及应用[J].材料保护,2010,43(4):15-21.WANG Yong-qian,JIANG Xu-dong,PAN Chun-xu.Technology and application of micro-arc oxidation on titanium and titanium alloy surface[J].Materials protection,2010,43(4):15-21.
    [12]赵志伟,王续跃,徐文骥.钛/钢层合板激光熔覆制备及其组织和性能[J].机械设计与制造,2015(10):117-121.ZHAO Zhi-wei,WANG Xu-yue,XU Wen-ji.Microstructure and properties for titanium clad steel plate prepared by laser cladding[J].Machinery design&manufacture,2015(10):117-121.
    [13]李玉海,卢世松,赵晖,等.纯钛微弧氧化膜的性能评价[J].功能材料,2014,45(s1):160-165.LI Yu-hai,LU Shi-song,ZHAO Hui,et al.Performance evaluation of pure titanium micro arc oxidation film[J].Journal of functional materials,2014,45(s1):160-165.
    [14]朱瑞富,王志刚,王爱娟,等.纯钛表面微弧氧化多孔陶瓷膜的结构特性[J].材料热处理学报,2009,30(2):129-134.ZHU Rui-fu,WANG Zhi-gang,WANG Ai-juan,et al.Microstructure and performance of porous ceramics film on surface of pure titanium[J].Transactions of material and heat treatment,2009,30(2):129-134.
    [15]莱茵斯·皮特尔斯.钛及钛合金[M].陈振华译.北京:化学工业出版社,2005.PETERS L C.Titanium and titanium alloys[M].CHENZhen-hua translated.Beijing:Chemical Industry Press,2005.
    [16]王军,刘莹.316L不锈钢在模拟体液中的腐蚀行为[J].表面技术,2016,45(11):76-80.WANG Jun,LIU Ying.Corrosion behavior of 316Lstainless steel in simulated body solution[J].Surface technology,2016,45(11):76-80.
    [17]孙桂兰,王磊.纯钛表面微弧氧化膜在模拟体液中的腐蚀行为[J].上海口腔医学,2007,16(3):295-299.SUN Gui-lan,WANG Lei.Corrosion behavior of titanium with micro-arc oxidation in simulated body fluid[J].Shanghai journal of stomatology,2007,16(3):295-299.
    [18]周鹏,林乃明,田伟,等.TC4合金微弧氧化层的耐磨性和耐蚀性[J].表面技术,2015,44(11):14-20.ZHOU Peng,LIN Nai-ming,TIAN Wei,et al.Wear and corrosion resistance of microarc oxidation coatings on TC4 alloy[J].Surface technology,2015,44(11):14-20.
    [19]严继康,唐婉霞,倪尔鑫,等.氧化时间对Ti6Al4V合金微弧氧化膜结构及耐腐蚀性能的影响[J].金属热处理,2015,40(10):86-91.YAN Ji-kang,TANG Wan-xia,NI Er-xin,et al.Effect of oxidation time on structure and corrosion resistance of micro-arc oxidation film on Ti6Al4V alloy[J].Heat treatment of metals,2015,40(10):86-91.
    [20]BYON E,JEONG Y,TAKEUCHI A,et al.Apatite-forming ability of micro-arc plasma oxidized layer of titanium in simulated body fluids[J].Surface&coatings technology,2007,201:5651-5654.
    [21]LEE Y S,NORDIN M,BABU S S,et al.Influence of fluid convection on weld pool formation in laser cladding[J].Welding research,2014,93(8):293-300.
    [22]DURDU S,KORKMAZ K,AKTUG S L,et al.Characterization and bioactivity of hydroxyapatite-based coatings formed on steel by electro-spark deposition and micro-arc oxidation[J].Surface&coatings technology,2017,326:111-120.
    [23]SUN J,HAN Y,HUANG X.Hydroxyapatite coatings prepared by micro-arc oxidation in Ca-and P-containing electrolyte[J].Surface&coatings technology,2007,201:5655-5658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700