用户名: 密码: 验证码:
气液交叉流阵列PM2.5热泳和扩散泳拟传质模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pseudo mass transfer model of PM2.5 thermophoresis and diffusiophoresis in gas-liquid cross flow array
  • 作者:杨海涛 ; 郑志坚 ; 朱家骅 ; 陈倬 ; 杨晨鹏 ; 段旬
  • 英文作者:YANG Haitao;ZHENG Zhijian;ZHU Jiahua;CHEN Zhuo;YANG Chenpeng;DUAN Xun;College of Chemical Engineering, Sichuan University;
  • 关键词:PM2.5 ; 拟传质模型 ; 气液交叉流 ; 热泳 ; 扩散泳
  • 英文关键词:PM2.5;;pseudo mass transfer model;;gas-liquid cross flow;;thermophoresis;;diffusiophoresis
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:四川大学化学工程学院;
  • 出版日期:2019-03-13 14:38
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(21276161)
  • 语种:中文;
  • 页:HGSZ201906012
  • 页数:8
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:121-128
摘要
基于气溶胶中PM2.5微细颗粒物拟流体特性,对气液交叉流阵列中PM2.5在气溶胶流体传热传质边界层内热泳和扩散泳运动进行拟传质机理分析,与跟随气体的对流传质相叠加,建立了气液交叉流阵列PM2.5热泳和扩散泳拟传质模型,并进行了实验检验。实验在固定对流条件下,考察了不同气液相温度差导致的热泳、不同气相湿度差导致的扩散泳和颗粒粒径等因素对气液交叉流阵列PM2.5拟传质系数的影响。实验数据统计值与模型表达趋势一致,在初始温差40℃、初始湿度0.118 kg/kg条件下,100排气液交叉流阵列PM2.5拟传质系数模型预测值为3.33×10~(-3)m/s、实验值为3.75×10~(-3)m/s。
        Based on the pseudo-fluid characteristics of PM2.5 in aerosol, the pseudo mass transfer mechanism of PM2.5 in gas-liquid heat and mass transfer boundary layer was analyzed, considering the convective mass transfer of PM2.5 caused by thermophoresis, diffusiophoresis and the gas movement, a pseudo mass transfer model of PM2.5 in gas-liquid cross flow array based on thermophoresis and diffusiophoresis is established, and the accuracy of the model is verified through experiments. The influencing of thermophoresis caused by gas-liquid temperature difference, diffusiophoresis caused by gas-liquid humidity difference and particle size on the pseudo mass transfer coefficient of PM2.5 was investigated under fixed convection conditions. The experimental data statistics are consistent with the model expression trend. Under the initial temperature difference of 40℃ and initial humidity of0.118 kg/kg, the predicted value of the PM2.5 pseudo-mass transfer coefficient model of the exhaust gas cross-flow array is 3.33×10~(-3) m/s, experimental value 3.75×10~(-3) m/s.
引文
[1]王玮,汤大钢,刘红杰,等.中国PM2.5污染状况和污染特征的研究[J].环境科学学报, 2000, 13(1):1-5.Wang W, Tang D G, Liu H J, et al. Research on current pollution status and pollution characteristics of PM2.5 in China[J].Research of Environmental Sciences, 2000, 13(1):1-5.
    [2]殷永文,程金平,段玉森,等.某市霾污染因子PM2.5引起居民健康危害的经济学评价[J].环境与健康杂志, 2011, 28(3):250-252.Yin Y W, Cheng J P, Duan Y S, et al. Economic evaluation of residents' health hazard caused by PM2.5 of haze pollution in acity[J]. Journal of Environment&Health, 2011, 28(3):250-252.
    [3]杨新兴,冯丽华,尉鹏.大气颗粒物PM2.5及其危害[J].前沿科学, 2012,(1):22-31.Yang X X, Feng L H, Wei P. Air particulate matter PM2.5 inBeijing and its harm[J]. Frontier Science, 2012,(1):22-31.
    [4] Davis E J, Schweiger G. The Airborne Microparticle[M]. Berlin:Springer Berlin Heidelberg, 2002.
    [5] Tucker W G. An overview of PM 2.5 sources and control strategies[J]. Fuel Processing Technology, 2000, 65(1):379-392.
    [6]张国权.气溶胶力学:除尘净化理论基础[M].北京:中国环境科学出版社, 1987.Zhang G Q. Aerosol Dynamics[M]. Beijing:China EnvironmentScience Press, 1987:110.
    [7]王明星,张仁健.大气气溶胶研究的前沿问题[J].气候与环境研究, 2001, 6(1):119-124.Wang M X, Zhang R J. Frontier of atmospheric aerosols researches[J]. Climatic and Environmental Research, 2001, 6(1):119-124.
    [8]王维,李佑楚.颗粒流体两相流模型研究进展[J].化学进展,2000, 12(2):208.Wang W, Li Y C. Progress of the simulation of particle-fluid two-phase flow[J]. Progress in Chemistry, 2000, 12(2):208-217.
    [9] Rudinger G. Fundamentals of Gas Particle Flow[M]. Amsterdam:Elsevier, 2012.
    [10] Kim J C, Lee K W. Experimental study of particle collection bysmall cyclones[J]. Aerosol Science&Technology, 1990, 12(4):1003-1015.
    [11]周涛,杨瑞昌,张记刚,等.矩形管边界层内亚微米颗粒运动热泳规律的实验研究[J].中国电机工程学报, 2010, 30(2):92-97.Zhou T, Yang R C, Zhang J G, et al. Experimental study on thethermophoresis movement of submicron particle in the boundarylayer of the rectangular pipe[J]. Proceedings of the CSEE, 2010, 30(2):92-97.
    [12]刘若雷,杨瑞昌,由长福,等.温度梯度场内可吸入颗粒物运动特性及热泳沉积[J].化工学报, 2009, 60(7):1623-1628.Liu R L, Yang R C, You C F, et al. Kinematic characteristics andthermophoretic deposition of inhalable particles in temperaturegradient field[J]. CIESC Journal, 2009, 60(7):1623-1628.
    [13] Prem A, Pilat M J. Calculated particle collection efficiencies bysingle droplets considering inertial impaction, Brownian diffusionand electrostatics[J]. Atmospheric Environment(1967), 1978, 12(10):1981-1990.
    [14]王翱,宋蔷,姚强.脱硫塔内单液滴捕集颗粒物的数值模拟[J].工程热物理学报, 2014, 35(9):1889-1893.Wang A, Song Q, Yao Q. Numerical simulation of single dropletcapturing particles in the WFGD[J]. Journal of EngineeringThermophysics, 2014, 35(9):1889-1893.
    [15] Romay F J, Takagaki S S, Pui D Y H, et al. Thermophoreticdeposition of aerosol particles in turbulent pipe flow[J]. Journal of Aerosol Science, 1998, 29(8):943-959.
    [16] Walton I C. Eddy diffusivity of solid particles in a turbulent liquidflow in a horizontal pipe[J]. AIChE Journal, 1995, 41(7):1815-1820.
    [17] Ay?e A, Kelbaliyev G, Ceylan K. Eddy diffusivity of particles inturbulent flow in rough channels[J]. Journal of Aerosol Science,2002, 33(7):1075-1086.
    [18] Waldmann L, Schmitt K H. Thermophoresis and diffusiophoresisof aerosol[M]//Davies C N. Aerosol Science. New York:AcademicPress, 1966:163-194.
    [19] Deryagin B V. The theory of the motion of small aerosol particlesin a diffusion field[J]. Doklady Akademii Nauk, 1957, 117(6):959-962.
    [20] Lehtinen K E J, Hokkinen J, Jokiniemi A A J K, et al. Studies onsteam condensation and particle diffusiophoresis in a heatexchanger tube[J]. Nuclear Engineering&Design, 2002, 213(1):67-77.
    [21] He C, Ahmadi G. Particle deposition with thermophoresis inlaminar and turbulent duct flows[J]. Aerosol Science andTechnology, 1998, 29(6):525-546.
    [22] Tsai C J, Lin J S, Aggarwal S G, et al. Thermophoretic depositionof particles in laminar and turbulent tube flows[J]. AerosolScience and Technology, 2004, 38(2):131-139.
    [23]陈治良,魏文韫,朱家骅,等.横掠液柱流的微粒运动机理及PM2.5捕获(Ⅱ):重型柴油机尾气PM2.5捕获效率[J].化工学报, 2012, 63(7):2010-2016.Chen Z L, Wei W Y, Zhu J H, et al. Mechanism of micro-particlemotion across falling liquid cylinder for PM2.5 separation(Ⅱ):Efficiency of PM2.5 separation from heavy-duty diesel exhausts[J].CIESC Journal, 2012, 63(7):2010-2016.
    [24]陈治良,魏文韫,朱家骅,等.横掠液柱流的微粒运动机理及PM2.5捕获(Ⅰ):附面运动轨迹与分离半径[J].化工学报, 2012,63(7):2001-2009.Chen Z L, Wei W Y, Zhu J H, et al. Mechanism of micro-particlemotion across falling liquid cylinder for PM2.5 separation(Ⅰ):Trajectory of particle motion towards surface and separation radius[J].CIESC Journal, 2012, 63(7):2001-2009.
    [25] Bird R B, Stewart W E, Lightfood E N. Transport Phenomena[M].New York:John Wiley&Sons Inc., 2002.
    [26] Brock J R. On the theory of thermal forces acting on aerosolparticles[J]. Journal of Colloid Science, 1962, 17(8):768-780.
    [27] Khan W A, Culham R J, Yovanovich M M. Analytical model forconvection heat transfer from tube banks[J]. Journal ofThermophysics&Heat Transfer, 1971, 20(4):720-727.
    [28] Davies C N. Aerosol Science[M]. London and New York:Academic Press, 1966.
    [29] Huisman I H, Tr?g?rdh C. Particle transport in cross flowmicrofiltration(Ⅰ):Effects of hydrodynamic and diffusion[J].Chemical Engineering Science, 1999, 54(2):271-280.
    [30] Lee K W, Liu B Y H. Experimental study of aerosol filtration byfibrous filters[J]. Aerosol Science&Technology, 1982, 1(1):35-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700