用户名: 密码: 验证码:
27SiMn钢表面激光淬火数值模拟及实验验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation and Experimental Verification of Laser Quenching on 27SiMn Steel Surface
  • 作者:郭卫 ; 张汉杰 ; 柴蓉霞
  • 英文作者:Guo Wei;Zhang Hanjie;Chai Rongxia;College of Mechanical Engineering,Xi'an University of Science and Technology;
  • 关键词:激光淬火 ; 27SiMn钢 ; 温度场仿真 ; 硬度 ; 显微组织
  • 英文关键词:laser quenching;;27SiMn steel;;temperature field simulation;;hardness;;microstructure
  • 中文刊名:YYJG
  • 英文刊名:Applied Laser
  • 机构:西安科技大学机械工程学院;
  • 出版日期:2019-06-15
  • 出版单位:应用激光
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划资助项目(项目编号:2017 YFC0804310)
  • 语种:中文;
  • 页:YYJG201903020
  • 页数:8
  • CN:03
  • ISSN:31-1375/T
  • 分类号:122-129
摘要
为了研究激光功率对液压支架立柱母材27SiMn钢激光淬火处理的影响,利用ANSYS有限元软件模拟了激光淬火的过程,得到了不同功率下温度场分布。在27SiMn钢表面进行了与数值模拟相同条件下的激光淬火实验,并分析了宏观形貌、显微组织和显微硬度。结果表明,数值模拟和实验所得到的淬火区深度基本一致。数值模拟中,工件峰值温度随激光功率增大而增大,整个温度场截面呈半月牙状;实验所得到的硬化层形貌与仿真结果类似,呈半月牙状。淬火后基体表层形成了细小致密的马氏体组织,且硬化层的硬度比基体增加了2.5倍以上,并且随着激光功率增加,硬化层的深度和硬度也逐渐增加。
        In order to study the influence of laser power on laser quenching of 27 SiMn steel for hydraulic support post, ANSYS finite element software was used to simulate the process of laser quenching, and the temperature field distribution under different power was obtained. The laser quenching experiment on 27 SiMn steel was carried out under the same conditions as the numerical simulation, and the macrostructure, microstructure and microhardness were analyzed. The results show that the depth of quenching zone obtained by numerical simulation and experiment is basically the same. In the numerical simulation, the peak temperature of the workpiece increases with the increase of the laser power, and the cross section of the whole temperature field is semilunar. The morphology of the hardened layer obtained by the experiment is similar to the simulation result and is semilunar. After quenching, fine and dense martensite microstructure is formed on the surface of the matrix, and the hardness of the hardened layer is increased by more than 2.5 times than that of the matrix, and the depth and hardness of the hardened layer gradually increased with the increase of laser power.
引文
[1] 赖乐锋,张永,李彦斌.环锻100MN制坯机厚壁液压缸体工艺研究[J].制造技术与机床,2015(1):139-141.
    [2] 徐宏伟,刘耀,闻德刚,等.实验优化激光淬火工艺参数研究[J].中国印刷与包装研究,2013,5(1):44-48.
    [3] 徐宏伟,潘正祥,闻德刚.激光淬火技术研究现状及其发展[J].中国印刷与包装研究,2014,6(2):1-8.
    [4] 李昊,沈以赴,李守卫,等.激光扫描路径对直接金属激光烧结温度场的影响[J].南京航空航天大学学报,2005,37(5):639-642.
    [5] 沈洪,石永军,姚振强,等.板料激光直线扫描弯曲角度的解析模型[J].上海交通大学学报,2006,40(9):1525-1528.
    [6] WANG JIJUN,SHEN ZHONGHUA,XU BAIQIANG,et al.Numerical simulation of laser generated ultrasound in non-metallic material by the finite element method[J].Optics & Laser Technology,2007,39(4):806-813.
    [7] 唐雪明.300M钢激光相变硬化温度场的数值模拟[D].陕西:西北工业大学,2006.
    [8] 孙文强.5CrNiMo钢激光表面淬火温度场数值模拟及硬化层均匀性研究[D].天津:天津理工大学,2012.
    [9] LUSQUI?OS F,CONDE J C,BONSS S,et al.Theoretical and experimental analysis of high power diode laser (HPDL) hardening of AISI 1045 steel[J].Applied Surface Science,2007,254(4):948-954.
    [10] ABITAN H,BOHR H,BUCHHAVE P.Correction to the beer-lambert-bouguer law for optical absorption[J].Applied Optics,2008,47(29):5354-5357.
    [11] 郭华锋,熊永超.ANSYS在激光熔覆成形温度场数值模拟中的应用[J].工具技术,20 09,43(5):73-75 .
    [12] 王明周.H13激光表面淬火数值模拟分析与实验研究[D].青岛:中国海洋大学,2015.
    [13] 张平,马琳,赵军军,等.激光熔覆数值模拟过程中的热源模型[J].中国表面工程,2006,19(z1):161-164.
    [14] 李安铭.奥氏体化温度和时间对27SiMn钢组织和性能的影响[J].金属热处理,2003,28(9):39-41.
    [15] 姚玉环,张立斌,王海泉,等.碳钢淬火马氏体硬度与含碳量的关系[J].金属热处理,2014,39(8):136-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700