用户名: 密码: 验证码:
西藏蓬错地区高镁流纹质岩石的发现及对班公湖-怒江洋演化的指示意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The discovery of high-Mg rhyolitic rocks in Peng Tso area,Tibet and its significance for evolution of Bangong-Nujiang Ocean
  • 作者:李海峰 ; 刘治博 ; 陈伟 ; 王楠 ; 王嘉星 ; 张开江 ; 李发桥 ; 王超
  • 英文作者:LI HaiFeng;LIU ZhiBo;CHEN Wei;WANG Nan;WANG JiaXing;ZHANG KaiJiang;LI FaQiao;WANG Chao;School of Earth Sciences and Resources,China University of Geosciences;Institute of Mineral Resources,Chinese Academy of Geological Sciences;College of Earth Sciences,Chengdu University of Technology;
  • 关键词:高镁流纹质岩石 ; 锆石U-Pb定年和Hf同位素 ; 蓬错 ; 班公湖-怒江结合带 ; 西藏
  • 英文关键词:High-Mg rhyolitic rock;;Zircon U-Pb dating and Hf isotope;;Peng Tso;;Bangong-Nujiang junction zone;;Tibet
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地质大学地球科学与资源学院;中国地质科学院矿产资源研究所;成都理工大学地球科学学院;
  • 出版日期:2019-03-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:v.35
  • 基金:中国地质调查局地质调查项目(DD2016026)资助
  • 语种:中文;
  • 页:YSXB201903011
  • 页数:17
  • CN:03
  • ISSN:11-1922/P
  • 分类号:185-201
摘要
本文首次报告了班公湖-怒江结合带内蓬错地区接奴群火山岩夹层中具有富硅(70. 5%~75. 2%)、高镁(2. 4%~3. 5%)和高Mg~#(69. 4~75. 7)等特殊地球化学特征的流纹质岩石(流纹英安岩、流纹岩),并对该岩石进行镜下鉴定、造岩矿物电子探针分析、锆石U-Pb和Lu-Hf同位素分析及全岩地球化学测试。岩相学观察发现,在斑晶和基质中均可见一定量的黑云母以及少量白云母。电子探针分析结果揭示该套高镁质岩石镁质成分主要由黑云母(MgO=9. 2%~20. 0%)贡献;白云母也具有富镁(MgO=1. 4%~4. 0%)的特征,因含量较少故贡献较弱。岩石具典型的弧火山岩特征,富集Rb、Th、U等大离子亲石元素(LILE),相对亏损Nb、Ta、Ti等高场强元素(HSFE),并具明显的Sr、Eu负异常。2件锆石U-Pb年龄结果(161. 5±0. 5Ma、163. 3±1. 7Ma)指示其为中-晚侏罗世火山活动的产物,与前人报道该地区高镁安山岩年龄一致,且具一致的ε_(Hf)(t)值和地球化学特征,指示与高镁安山岩具有成因联系。研究结果表明蓬错高镁质流纹岩是由俯冲洋壳沉积物熔体与地幔组分发生交代作用经由角闪石等矿物相的结晶分异形成的酸性岩浆,并水下喷发的产物;结合地球化学特征,指示其形成于与洋壳俯冲相关的活动大陆边缘弧环境。因研究区地处班公湖-怒江结合带内部,夹持于南羌塘和北拉萨地块之间;且研究区出露老地层(二叠纪之前),南北两侧均有蛇绿岩展布,故提出蓬错高镁流纹质火山岩可能形成于班公湖怒江洋内部小洋盆洋壳俯冲至微陆块之下的构造地质背景。蓬错流纹质岩石为首次报道的具有高镁、富硅特征的流纹质岩石,这种特殊岩石的发现不仅完善高镁岩石家族体系(高镁玄武岩、高镁安山岩、高镁英安岩和高镁流纹岩),同时也为研究班怒洋演化提供详实的证据。
        In this study,we report the results of zircon U-Pb ages,Hf isotopic analysis and systematic whole-rock geochemical data for the Late Jurassic rhyolitic rocks( rhyolitic dacite,rhyolite),which occur as the volcanic interlayers of the Jienu Group in the Peng Tso area of the Bangong-Nujiang suture zone. Furthermore,we carried out detail microscopic identification and electron probe analysis.Electron probe analysis reveals that the magnesium component of the High-Mg( HM) rocks is mainly contributed by biotite( MgO =9. 2% ~ 20. 0%). The zircon U-Pb dating of two samples indicate that they crystallized at ca. 163 ~ 161 Ma. Geochemically,the rhyolitic rocks are characteristic by high SiO_2( 70. 5% ~ 75. 2%),MgO( 2. 4% ~ 3. 5%) and Mg~#( 69. 4 ~ 75. 7). All samples are enriched in large ion lithophilic elements( LILE) and relatively depleted high field strength elements( HSFE),with obvious negative Sr,Eu anomalies,which are typical characteristics of arc volcanic rocks. Their ε_(Hf)( t) values exhibit a narrow range of variation and mainly concentrated on-9 ~-7. Our new data,combined with previously published date about HM andesites in the same area,indicate they have genetically related. The results show that in an arc environment of active continental margin related to oceanic crust subduction,the melts formed by subducted oceanic crust sediment metasomatismed by mantle component and then crystallized of mineral phases such as hornblende formed the HM rhyolitic rocks. Since the study area is located inside the Bangong-Nujiang suture zone,it is far away from the South Qiangtang and North Lhasa terranes,and there are many Pre-Permian stratum inside and ophiolites on both sides,so we deem that the high-magnesium rhyolitic volcanic rocks may be the result of the subduction of the oceanic crust between the microcontinent in the Bangong-Nujiang Ocean. The discovery of HM rhyolitic rocks not only complement the high Mg rocks family system( HM basalt,HM andesite,HM dacite and HM rhyolite),but also provide detailed evidence for the study of the evolution of the Bangong-Nujiang Ocean.
引文
Allégre CJ and Minster JF.1978.Quantitative models of trace element behavior in magmatic processes.Earth and Planetary Science Letters,38(1):1-25
    Allégre CJ,Courtillot V,Tapponnier P,Hirn A,Mattauer M,Coulon C,Jaeger JJ,Achache J,Schrer U,Marcoux J,Burg JP,Girardeau J,Armijo R,Gariépy C,G9pel C,Li TD,Xiao XC,Chang CF,Li GQ,Lin BY,Teng JW,Wang NW,Chen GM,Han TL,Wang XB,Deng WM,Sheng HB,Cao YG,Zhou J,Qiu HR,Bao PS,Wang SC,Wang BX,Zhou YX and Xu RH.1984.Structure and evolution of the Himalaya-Tibet orogenic belt.Nature,307(5946):17-22
    Baker F.1979.Trondhjemite:Definition,environment and hypotheses of origin.Developments in Petrology,6:1-12
    Belousova E,Griffin W,O’Reilly SY and Fisher N.2002.Igneous zircon:Trace element composition as an indicator of source rock type.Contributions to Mineralogy and Petrology,143(5):602-622
    Bloomer SH and Hawkins JW.1987.Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench.Contributions to Mineralogy and Petrology,97(3):361-377
    Brown GC,Thorpe RS and Webb PC.1984.The geochemical characteristics of granitoids in contrasting arc and comments on magma sources.Journal of the Geological Society,141(3):413-426
    Cameron WE,Mc Culloch MT and Walker DA.1983.Boninite petrogenesis:Chemical and Nd-Sr isotopic constraints.Earth and Planetary Science Letters,65(1):75-89
    Condie KC.1989.Geochemical changes in basalts and andesites across the Archaean-Proterozoic boundary:Identification and significance.Geochimica et Cosmochimica Acta,43:615-627
    Corti G,Sani F,Agostini S,Philippon M,Sokoutis D and Willingshofer E.2018.Off-axis volcano-tectonic activity during continental rifting:Insights from the transversal Goba-Bonga lineament,Main Ethiopian Rift(East Africa).Tectonophysics,728-729:75-91
    Crawford AJ.1989.Boninites.London:Unwin Hyman,1-465
    Defant MJ and Drummond MS.1990.Derivation of some modern arc magmas by melting of young subducted lithosphere.Nature,347(6294):662-665
    Deng JF,Xiao QH,Su SG,Liu C,Zhao GC,Wu ZX and Liu Y.2007.Igneous petrotectonic assemblages and tectonic settings:Adiscussion.Geological Journal of China Universities,13(3):392-402(in Chinese with English abstract)
    Deng JF,Liu C,Feng YF,Xiao QH,Su SG,Zhao GC,Kong WQ and Cao WY.2010.High magnesian andesitic/dioritic rocks(HMA)and magnesian andesitic/dioritic rocks(MA):Two igneous rock types related to oceanic subduction.Geology in China,37(4):1112-1118(in Chinese with English abstract)
    Dewey JF,Shackleton RM,Chang CF,Sun YY,Chang CF,Shackleton RM,Dewey JF and Yin JX.1988.The tectonic evolution of the Tibetan Plateau.Philosophical Transactions of the Royal Society of London,Series A,Mathematical and Physical Sciences,327(1594):379-413
    Ding L,Li ZY and Song PP.2017.Core fragments of Tibetan Plateau from Gondwanaland united in northern hemisphere.Bulletin of Chinese Academy of Sciences,32(9):945-950(in Chinese with English abstract)
    Falloon TJ and Danyushevsky LV.2000.Melting of refractory mantle at1.5,2 and 2.5GPa under anhydrous and H2O-under-saturated conditions:Implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting.Journal of Petrology,41(2):257-283
    Fan JJ,Li C,Xie CM,Wang M and Chen JW.2015.The evolution of the Bangong-Nujiang Neo-Tethys Ocean:Evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites.Tectonophysics,655:27-40
    Fontijn K,Elburg MA,Nikogosian IK,Van Bergen MJ and Ernst GGJ.2013.Petrology and geochemistry of Late Holocene felsic magmas from Rungwe volcano(Tanzania),with implications for trachytic Rungwe Pumice eruption dynamics.Lithos,177:34-53
    Guynn JH,Kapp P,Pullen A,Heizler M,Gehrels GE and Ding L.2006.Tibetan basement rocks near Amdo reveal“missing”Mesozoic tectonism along the Bangong suture,central Tibet.Geology,34(6):505-508
    Guynn JH,Kapp P,Gehrels GE and Ding L.2012.U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications.Journal of Asian Earth Sciences,43(1):23-50
    Guynn JH,Tropper P,Kapp P and Gehrels GE.2013.Metamorphism of the Amdo metamorphic complex,Tibet:Implications for the Jurassic tectonic evolution of the Bangong suture zone.Journal of Metamorphic Geology,31(7):705-727
    Hirose K.1997.Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts.Geology,25(1):42-44
    Hoskin PWO and Schaltegger U.2003.The composition of zircon and igneous and metamorphic petrogenesis.Reviews in Mineralogy and Geochemistry,53(1):27-62
    Hou ZQ,Duan LF,Lu YJ,Zheng YC,Zhu DC,Yang ZM,Yang ZS,Wang BD,Pei YR,Zhao ZD and Mc Cuaig TC.2015.Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen.Economic Geology,110:1541-1575
    Hu PY,Li C,Wu YW,Xie CM,Wang M and Li J.2014.Opening of the Longmu Co-Shuanghu-Lancangjiang Ocean:Constraints from plagiogranites.Chinese Science Bulletin,59(25):3188-3199
    Irvine TN and Baragar WRA.1971.A guide to the chemical classification of the common volcanic rocks.Canadian Journal of Earth Sciences,8(5):523-548
    Kamei A,Owada M,Nagao T and Shiraki K.2004.High-Mg diorites derived from sanukitic HMA magmas,Kyushu Island,Southwest Japan arc:Evidence from clinopyroxene and whole rock compositions.Lithos,75(3-4):359-371
    Kapp P,Murphy MA,Yin A,Harrison TM,Ding L and Guo JH.2003.Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet.Tectonics,22(4):1029
    Kapp P,Yin A,Harrison TM and Ding L.2005.Cretaceous-Tertiary shortening,basin development,and volcanism in central Tibet.Geological Society of America Bulletin,117(7-8):865-878
    Kay RW.1978.Aleutian magnesian andesites:Melts from subducted Pacific Ocean crust.Journal of Volcanology and Geothermal Research,4(1-2):117-132
    Kelemen PB.1995.Genesis of high Mg#andesites and the continental crust.Contributions to Mineralogy and Petrology,120(1):1-19
    Le Bas MJ,Le Maitre RW,Streckeisen A and Zanettin B.1986.Achemical classification of volcanic rocks based on the total alkalisilica diagram.Journal of Petrology,27(3):745-750
    Le Maitre RW.1989.A Classification of Igneous Rocks and Glossary of Terms.Oxford:Blackwell,1-253
    Le Bas MJ.2000.IUGS reclassification of the high-Mg and picritic volcanic rocks.Journal of Petrology,40(10):1467-1470
    Li C,Huang XP,Zhai QG,Zhu TX,Yu YS,Wang GH and Zeng QG,2006.The Longmu Co-Shuanghu-Jitang plate suture and the northern boundary of Gondwanaland in the Qinghai-Tibet Plateau.Earth Science Frontiers,13(4):136-147(in Chinese with English abstract)
    Li HF,Liu ZB,Song Y,Li FQ,Teng L,Wang JX and Wang C.2018.The first discovery of rhyolite interlayer in the Mugagangri Group in the Bangonghu-Nujiang Suture Zone,Tibet and the U-Pb dating.Acta Geologica Sinica,92(1):416-417
    Li XB,Wang BD,Liu H,Wang LQ and Chen L.2015.The Late Jurassic high-Mg andesites in the Daru Tso area,Tibet:Evidence for the subduction of the Bangong Co-Nujiang River oceanic lithosphere.Geological Bulletin of China,34(2-3):251-261(in Chinese with English abstract)
    Ludwig KR.2003.ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel.California,Berkeley:Berkeley Geochronology Center,1-70
    O’Connor JT.1965.A classification for quzrtz-rich igneous rock based on fledspar ratios.U.S.Geol.Sur.Prof.Paper,525:B79-B84
    Pan GT,MO XX,Hou ZQ,Zhu DC,Wang LQ,Li GM,Zhao ZD,Geng QR and Liao ZL.2006.Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution.Acta Petrologica Sinica,22(3):521-533(in Chinese with English Abstract)
    Pearce JA and Mei HJ.1988.Volcanic rocks of the 1985 Tibet Geotraverse:Lhasa to golmud.Philosophical Transactions of the Royal Society of London,Series A,Mathematical and Physical Sciences,327(1594):169-201
    Pitcher WS.1993.The Nature and Origin of Granite.Glasgow:Blackie Academic&Professional,288-294
    Qian Q and Hermann J.2010.Formation of High-Mg diorites through assimilation of peridotite by monzodiorite magma at crustal depths.Journal of Petrology,51(7):1381-1416
    Rogers G,Saunders AD,Terrell DJ,Verma SP and Marriner GF.1985.Geochemistry of Holocene volcanic rocks associated with ridge Subduction in Baja California,Mexico.Nature,315(6018):389-392
    Sami M,Ntaflos T,Farahat ES,Mohamed HA,Hauzenberger C and Ahmed AF.2018.Petrogenesis and geodynamic implications of Ediacaran highly fractionated A-type granitoids in the north ArabianNubian Shield(Egypt):Constraints from whole-rock geochemistry and Sr-Nd isotopes.Lithos,304-307:329-346
    Saunders AD,Rogers G,Marriner GF,Terrell DJ and Verma SP.1987.Geochemistry of Cenezoic volcanic rocks,Baja California,Mexico:Implications for the petrogenesis of post-subduction magmas.Journal of Volcanology and Geothermal Research,32(1-3):223-245
    Shi RD,Alard O,Zhi XC,O’Reilly YS,Pearson JN,Griffin WL,Zhang M and Chen XM.2007.Multiple events in the Neo-Tethyan oceanic upper mantle:Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites,Tibet.Earth and Planetary Science Letters,261(1-2):33-48
    Shimoda G,Tatsumi Y,Nohda S,Ishizaka K and Jahn BM.1998.Setouchi high-Mg andesites revisited:Geochemical evidence for melting of subducting sediments.Earth and Planetary Science Letters,160(3-4):479-492
    Sun SS and Mc Donough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ(eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publication,42(1):313-345
    Tatsumi Y.1981.Melting experiments on a high-magnesian andesite.Earth and Planetary Science Letters,54(2):357-365
    Tatsumi Y.1982.Origin of high-magnesian andesites in the Setouchi volcanic belt,southwest Japan,Ⅱ.Melting phase relations at high pressures.Earth and Planetary Science Letters,60(2):305-317
    Tatsumi Y and Ishizaka K.1982.Origin of high-magnesian andesites in the Setouchi volcanic belt,Southwest Japan,I.Petrographical and chemical characteristics.Earth and Planetary Science Letters,60(2):293-304
    Tatsumi Y.2001.Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction:Generation of high-Mg andesites in the Setouchi volcanic belt,southwest Japan.Geology,29(4):323-326
    Tatsumi Y and Hanyu T.2003.Geochemical modeling of dehydration and partial melting of subducting lithosphere:Toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt,SW Japan.Geochemistry Geophysics Geosystems,4(9):1081,doi:10.1029/2003GC000530
    Tatsumi Y.2006.High-Mg andesites in the Setouchi volcanic belt,Southwestern Japan:Analogy to Archean magmatism and continental crust formation?Annual Review of Earth and Planetary Sciences,34:467-499
    Taylor RN,Nesbitt RW,Vidal P,Harmon RS,Auvray B and Croudace IW.1994.Mineralogy,chemistry,and genesis of the boninite series volcanics,Chichijima,Bonin Islands,Japan.Journal of Petrology,35(3):577-617
    Wang BD,Chen JL,Xu JF and Wang LQ.2014.Geochemical and SrNd-Pb-Os isotopic compositions of Miocene ultrapotassic rocks in southern Tibet:Petrogenesis and implications for the regional tectonic history.Lithos,208-209:237-250
    Wang Y.2010.Field occurrence and origin of the Xinglonggou igneous rocks in Beipiao,western Liaoning Province and their geological significance.Acta Geologica Sinica,84(7):963-980(in Chinese with English abstract)
    Wang YJ,Yuan C,Long XP,Sun M,Xiao WJ,Zhao GC,Cai KD and Jiang YD.2011.Geochemistry,zircon U-Pb ages and Hf isotopes of the Paleozoic volcanic rocks in the northwestern Chinese Altai:Petrogenesis and tectonic implications.Journal of Asian Earth Sciences,42(5):969-985
    Winchester JA and Floyd PA.1977.Geochemical discrimination of different magma series and their differentiation products using immobile elements.Chemical Geology,20:325-343
    Wood BJ and Turner SP.2009.Origin of primitive high-Mg andesite:Constraints from natural examples and experiments.Earth and Planetary Science Letters,283(1-4):59-66
    Yin A and Harrison TM.2000.Geologic evolution of the HimalayanTibetan Orogen.Annual Review of Earth and Planetary Sciences,28:211-280
    Zhang KJ,Zhang YX,Tang XC,Xie YW,Sha SL and Peng XJ.2008.First report of eclogites from central Tibet,China:Evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision.Terra Nova,20(4):302-308
    Zhou LM,Wang R,Hou ZQ,Li C,Zhao H,Li XW and Qu WJ.2018.Hot Paleocene-Eocene Gangdese arc:Growth of continental crust in southern Tibet.Gondwana Research,62:178-197
    Zhu DC,Pan GT,Wang LQ,Mo XX,Zhao ZD,Zhou CY,Liao ZL,Dong GC and Yuan SH.2008.Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt,Tibet,China.Geological Bulletin of China,27(4):458-468(in Chinese with English abstract)
    Zhu DC,Zhao ZD,Niu YL,Mo XX,Chung SL,Hou ZQ,Wang LQ and Wu FY.2011a.The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth.Earth and Planetary Science Letters,301(1-2):241-255
    Zhu DC,Zhao ZD,Niu YL,Dilek Y and Mo XX.2011b.Lhasa terrane in southern Tibet came from Australia.Geology,39(8):727-730
    Zhu DC,Zhao ZD,Niu YL,Dilek Y,Hou ZQ and Mo XX.2013.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454
    邓晋福,肖庆辉,苏尚国,刘翠,赵国春,吴宗絮,刘勇.2007.火成岩组合与构造环境:讨论.高校地质学报,13(3):392-402
    邓晋福,刘翠,冯艳芳,肖庆辉,苏尚国,赵国春,孔维琼,曹文燕.2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质,37(4):1112-1118
    丁林,李震宇,宋培平.2017.青藏高原的核心来自南半球冈瓦纳大陆.中国科学院院刊,32(9):945-950
    胡培远,李才,吴彦旺,解超明,王明,李娇.2014.龙木错-双湖-澜沧江洋的打开时限:来自斜长花岗岩的制约.科学通报,59(20):1992-2003
    李才,黄小鹏,翟庆国,朱同兴,于远山,王根厚,曾庆高.2006.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界缝合带与冈瓦纳北界.地学前缘,13(4):136-147
    李小波,王保弟,刘函,王立全,陈莉.2015.西藏达如错地区晚侏罗世高镁安山岩---班公湖-怒江洋壳俯冲消减的证据.地质通报,34(2-3):251-261
    潘桂棠,莫宣学,侯增谦,朱弟成,王立全,李光明,赵志丹,耿全如,廖忠礼.2006.冈底斯造山带的时空结构及演化.岩石学报,22(3):521-533
    汪洋.2010.辽宁北票兴隆沟火成岩的野外产状、岩石成因及地质意义.地质学报,84(7):963-980
    朱弟成,潘桂棠,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报,27(4):458-468
    (1)西藏自治区地质调查院.2002.1∶250000班戈幅(H46C001001)区域地质调查报告
    (1)湖北省地质调查院.2015.1∶50000班戈江错地区(H46E002003、H46E002004、H46E003003 H46E003004、H46E004003、H46E004004)6幅区域地质矿产调查报告

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700