用户名: 密码: 验证码:
OsSPL18 controls grain weight and grain number in rice
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:OsSPL18 controls grain weight and grain number in rice
  • 作者:Hua ; Yuan ; Peng ; Qin ; Li ; Hu ; Shijie ; Zhan ; Shifu ; Wang ; Peng ; Gao ; Jing ; Li ; Mengya ; Jin ; Zhengyan ; Xu ; Qiang ; Gao ; Anping ; Du ; Bin ; Tu ; Weilan ; Chen ; Bingtian ; Ma ; Yuping ; Wang ; Shigui ; Li
  • 英文作者:Hua Yuan;Peng Qin;Li Hu;Shijie Zhan;Shifu Wang;Peng Gao;Jing Li;Mengya Jin;Zhengyan Xu;Qiang Gao;Anping Du;Bin Tu;Weilan Chen;Bingtian Ma;Yuping Wang;Shigui Li;Rice Research Institute,Sichuan Agricultural University;State Key Laboratory of Hybrid Rice,Sichuan Agricultural University;Station of Foundation and Improved Seed-breeding of Sichuan Province;State Key Laboratory of Plant Genomics,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences;
  • 英文关键词:OsSPL18;;Grain weight;;Grain number;;DEP1;;Rice
  • 中文刊名:YCXB
  • 英文刊名:遗传学报(英文版)
  • 机构:Rice Research Institute,Sichuan Agricultural University;State Key Laboratory of Hybrid Rice,Sichuan Agricultural University;Station of Foundation and Improved Seed-breeding of Sichuan Province;State Key Laboratory of Plant Genomics,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences;
  • 出版日期:2019-01-20
  • 出版单位:Journal of Genetics and Genomics
  • 年:2019
  • 期:v.46
  • 基金:supported by funds from the Rice Molecular Design Breeding (2016YFD0101801);; the National Natural Science Foundation of China (91535102 and 31771760);; the Open Research Fund of State Key Laboratory of Hybrid Rice (2016KF09)
  • 语种:英文;
  • 页:YCXB201901006
  • 页数:11
  • CN:01
  • ISSN:11-5450/R
  • 分类号:45-55
摘要
Grain weight and grain number are two important traits directly determining grain yield in rice. To date,a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism underlying these genes remains largely unknown. In this study, we studied the biological function of OsSPL18 during grain and panicle development in rice. Knockout (KO) mutants of OsSPL18exhibited reduced grain width and thickness, panicle length and grain number, but increased tiller number. Cytological analysis showed that OsSPL18 regulates the development of spikelet hulls by affecting cell proliferation. qRT-PCR and GUS staining analyses showed that OsSPL18 was highly expressed in developing young panicles and young spikelet hulls, in agreement with its function in regulating grain and panicle development. Transcriptional activation experiments indicated that OsSPL18is a functional transcription factor with activation domains in both the N-terminus and C-terminus, and both activation domains are indispensable for its biological functions. Quantitative expression analysis showed that DEP1, a major grain number regulator, was significantly down-regulated in OsSPL18 KO lines.Both yeast one-hybrid and dual-luciferase (LUC) assays showed that OsSPL18 could bind to the DEP1promoter, suggesting that OsSPL18 regulates panicle development by positively regulating the expression of DEP1. Sequence analysis showed that OsSPL18 contains the OsmiR156k complementary sequence in the third exon; 5?RLM-RACE experiments indicated that OsSPL18 could be cleaved by OsmiR156k. Taken together, our results uncovered a new OsmiR156k-OsSPL18-DEP1 pathway regulating grain number in rice.
        Grain weight and grain number are two important traits directly determining grain yield in rice. To date,a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism underlying these genes remains largely unknown. In this study, we studied the biological function of OsSPL18 during grain and panicle development in rice. Knockout (KO) mutants of OsSPL18exhibited reduced grain width and thickness, panicle length and grain number, but increased tiller number. Cytological analysis showed that OsSPL18 regulates the development of spikelet hulls by affecting cell proliferation. qRT-PCR and GUS staining analyses showed that OsSPL18 was highly expressed in developing young panicles and young spikelet hulls, in agreement with its function in regulating grain and panicle development. Transcriptional activation experiments indicated that OsSPL18is a functional transcription factor with activation domains in both the N-terminus and C-terminus, and both activation domains are indispensable for its biological functions. Quantitative expression analysis showed that DEP1, a major grain number regulator, was significantly down-regulated in OsSPL18 KO lines.Both yeast one-hybrid and dual-luciferase (LUC) assays showed that OsSPL18 could bind to the DEP1promoter, suggesting that OsSPL18 regulates panicle development by positively regulating the expression of DEP1. Sequence analysis showed that OsSPL18 contains the OsmiR156k complementary sequence in the third exon; 5?RLM-RACE experiments indicated that OsSPL18 could be cleaved by OsmiR156k. Taken together, our results uncovered a new OsmiR156k-OsSPL18-DEP1 pathway regulating grain number in rice.
引文
Ashikari,M.,Sakakibara,H.,Lin,S.,Yamamoto,T.,Takashi,T.,Nishimura,A.,Angeles,E.R.,Qian,Q.,Kitano,H.,Matsuoka,M.,2005.Cytokinin oxidase regulates rice grain production.Science 309,741e745.
    Bai,X.,Huang,Y.,Hu,Y.,Liu,H.,Zhang,B.,Smaczniak,C.,Hu,G.,Han,Z.,Xing,Y.,2017.Duplication of an upstream silencer of FZP increases grain yield in rice.Nat.Plants 3,885e893.
    Bai,X.,Huang,Y.,Mao,D.,Wen,M.,Zhang,L.,Xing,Y.,2016.Regulatory role of FZPin the determination of panicle branching and spikelet formation in rice.Sci.Rep.6,19022.
    Birkenbihl,R.P.,Jach,G.,Saedler,H.,Huijser,P.,2005.Functional dissection of the plant-specific SBP-domain:overlap of the DNA-binding and nuclear localization domains.J.Mol.Biol.352,585e596.
    Chen,X.,Zhang,Z.,Liu,D.,Zhang,K.,Li,A.,Mao,L.,2010.SQUAMOSA promoterbinding protein-like transcription factors:star players for plant growth and development.J.Integr.Plant Biol.52,946e951.
    Dai,Z.,Wang,J.,Yang,X.,Lu,H.,Miao,X.,Shi,Z.,2018.Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice.J.Exp.Bot.69,5117e5130.
    Duan,P.,Xu,J.,Zeng,D.,Zhang,B.,Geng,M.,Zhang,G.,Huang,K.,Huang,L.,Xu,R.,Ge,S.,Qian,Q.,Li,Y.,2017.Natural variation in the promoter of GSE5 contributes to grain size diversity in rice.Mol.Plant 10,685e694.
    Fan,C.,Xing,Y.,Mao,H.,Lu,T.,Han,B.,Xu,C.,Li,X.,Zhang,Q.,2006.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein.Theor.Appl.Genet.112,1164e1171.
    Hiei,Y.,Ohta,S.,Komari,T.,Kumashiro,T.,1994.Efficient transformation of rice(Oryza sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.Plant J.6,271e282.
    Hu,J.,Wang,Y.,Fang,Y.,Zeng,L.,Xu,J.,Yu,H.,Shi,Z.,Pan,J.,Zhang,D.,Kang,S.,2015.A rare allele of GS2 enhances grain size and grain yield in rice.Mol.Plant8,1455e1465.
    Huang,K.,Wang,D.,Duan,P.,Zhang,B.,Xu,R.,Li,N.,Li,Y.,2017.WIDE AND THICKGRAIN 1,which encodes an otubain-like protease with deubiquitination activity,influences grain size and shape in rice.Plant J.91,849e860.
    Huang,X.,Qian,Q.,Liu,Z.,Sun,H.,He,S.,Luo,D.,Xia,G.,Chu,C.,Li,J.,Fu,X.,2009.Natural variation at the DEP1 locus enhances grain yield in rice.Nat.Genet.41,494e497.
    Ishii,T.,Numaguchi,K.,Miura,K.,Yoshida,K.,Thanh,P.T.,Htun,T.M.,Yamasaki,M.,Komeda,N.,Matsumoto,T.,Terauchi,R.,Ishikawa,R.,Ashikari,M.,2013.OsLG1regulates a closed panicle trait in domesticated rice.Nat.Genet.45,462e465.
    Ishimaru,K.,Hirotsu,N.,Madoka,Y.,Murakami,N.,Hara,N.,Onodera,H.,Kashiwagi,T.,Ujiie,K.,Shimizu,B.,Onishi,A.,Miyagawa,H.,Katoh,E.,2013.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield.Nat.Genet.45,707e711.
    Jiang,L.,Liu,X.,Xiong,G.,Liu,H.,Chen,F.,Wang,L.,Meng,X.,Liu,G.,Yu,H.,Yuan,Y.,Yi,W.,Zhao,L.,Ma,H.,He,Y.,Wu,Z.,Melcher,K.,Qian,Q.,Xu,H.E.,Wang,Y.,Li,J.,2013.DWARF 53 acts as a repressor of strigolactone signalling in rice.Nature 504,401e405.
    Jiao,Y.,Wang,Y.,Xue,D.,Wang,J.,Yan,M.,Liu,G.,Dong,G.,Zeng,D.,Lu,Z.,Zhu,X.,Qian,Q.,Li,J.,2010.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.Nat.Genet.42,541e544.
    Klein,J.,Saedler,H.,Huijser,P.,1996.A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA.Mol.Gen.Genet.250,7e16.
    Lee,J.,Park,J.J.,Kim,S.L.,Yim,J.,An,G.,2007.Mutations in the rice liguleless gene result in a complete loss of the auricle,ligule,and laminar joint.Plant Mol.Biol.65,487e499.
    Li,M.,Tang,D.,Wang,K.,Wu,X.,Lu,L.,Yu,H.,Gu,M.,Yan,C.,Cheng,Z.,2011a.Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice.Plant Biotechnol.J.9,1002e1013.
    Li,S.,Zhao,B.,Yuan,D.,Duan,M.,Qian,Q.,Tang,L.,Wang,B.,Liu,X.,Zhang,J.,Wang,J.,Sun,J.,Liu,Z.,Feng,Y.Q.,Yuan,L.,Li,C.,2013.Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression.Proc.Natl.Acad.Sci.U.S.A.110,3167e3172.
    Li,X.,Qian,Q.,Fu,Z.,Wang,Y.,Xiong,G.,Zeng,D.,Wang,X.,Liu,X.,Teng,S.,Hiroshi,F.,2003.Control of tillering in rice.Nature 422,618e621.
    Li,Y.,Fan,C.,Xing,Y.,Jiang,Y.,Luo,L.,Sun,L.,Shao,D.,Xu,C.,Li,X.,Xiao,J.,He,Y.,Zhang,Q.,2011b.Natural variation in GS5 plays an important role in regulating grain size and yield in rice.Nat.Genet.43,1266e1269.
    Liu,J.,Chen,J.,Zheng,X.,Wu,F.,Lin,Q.,Heng,Y.,Tian,P.,Cheng,Z.,Yu,X.,Zhou,K.,Zhang,X.,Guo,X.,Wang,J.,Wang,H.,Wan,J.,2017.GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice.Nat.Plants 3,17043.
    Liu,L.,Tong,H.,Xiao,Y.,Che,R.,Xu,F.,Hu,B.,Liang,C.,Chu,J.,Li,J.,Chu,C.,2015.Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.Proc.Natl.Acad.Sci.U.S.A.112,11102e11107.
    Liu,Q.,Han,R.,Wu,K.,Zhang,J.,Ye,Y.,Wang,S.,Chen,J.,Pan,Y.,Li,Q.,Xu,X.,Zhou,J.,Tao,D.,Wu,Y.,Fu,X.,2018.G-protein betagamma subunits determine grain size through interaction with MADS-domain transcription factors in rice.Nat.Commun.9,852.
    Liu,Q.,Harberd,N.P.,Fu,X.,2016.SQUAMOSA promoter binding protein-like transcription factors:targets for improving cereal grain yield.Mol.Plant 9,765e767.
    Lu,Z.,Yu,H.,Xiong,G.,Wang,J.,Jiao,Y.,Liu,G.,Jing,Y.,Meng,X.,Hu,X.,Qian,Q.,Fu,X.,Wang,Y.,Li,J.,2013.Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture.Plant Cell 25,3743e3759.
    Mao,H.,Sun,S.,Yao,J.,Wang,C.,Yu,S.,Xu,C.,Li,X.,Zhang,Q.,2010.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice.Proc.Natl.Acad.Sci.U.S.A.107,19579e19584.
    Miura,K.,Ikeda,M.,Matsubara,A.,Song,X.J.,Ito,M.,Asano,K.,Matsuoka,M.,Kitano,H.,Ashikari,M.,2010.OsSPL14 promotes panicle branching and higher grain productivity in rice.Nat.Genet.42,545e549.
    Paradis,E.,2010.pegas:an R package for population genetics with an integratedmodular approach.Bioinformatics 26,419e420.
    Shan,Q.,Wang,Y.,Li,J.,Zhang,Y.,Chen,K.,Liang,Z.,Zhang,K.,Liu,J.,Xi,J.J.,Qiu,J.-L.,Gao,C.,2013.Targeted genome modification of crop plants using a CRISPR-Cas system.Nat.Biotechnol.31,686e688.
    Si,L.,Chen,J.,Huang,X.,Gong,H.,Luo,J.,Hou,Q.,Zhou,T.,Lu,T.,Zhu,J.,Shangguan,Y.,Chen,E.,Gong,C.,Zhao,Q.,Jing,Y.,Zhao,Y.,Li,Y.,Cui,L.,Fan,D.,Lu,Y.,Weng,Q.,Wang,Y.,Zhan,Q.,Liu,K.,Wei,X.,An,K.,An,G.,Han,B.,2016.OsSPL13 controls grain size in cultivated rice.Nat.Genet.48,447e456.
    Song,X.J.,Huang,W.,Shi,M.,Zhu,M.Z.,Lin,H.X.,2007.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nat.Genet.39,623e630.
    Song,X.J.,Kuroha,T.,Ayano,M.,Furuta,T.,Nagai,K.,Komeda,N.,Segami,S.,Miura,K.,Ogawa,D.,Kamura,T.,Suzuki,T.,Higashiyama,T.,Yamasaki,M.,Mori,H.,Inukai,Y.,Wu,J.,Kitano,H.,Sakakibara,H.,Jacobsen,S.E.,Ashikari,M.,2015.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight,yield,and plant biomass in rice.Proc.Natl.Acad.Sci.U.S.A.112,76e81.
    Sun,S.,Wang,L.,Mao,H.,Shao,L.,Li,X.,Xiao,J.,Ouyang,Y.,Zhang,Q.,2018.A G-protein pathway determines grain size in rice.Nat.Commun.9,851.
    Taguchi-Shiobara,F.,Kawagoe,Y.,Kato,H.,Onodera,H.,Tagiri,A.,Hara,N.,Miyao,A.,Hirochika,H.,Kitano,H.,Yano,M.,Toki,S.,2011.A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets.Breed Sci.61,17e25.
    Takeda,T.,Suwa,Y.,Suzuki,M.,Kitano,H.,Ueguchi-Tanaka,M.,Ashikari,M.,Matsuoka,M.,Ueguchi,C.,2003.The OsTB1 gene negatively regulates lateral branching in rice.Plant J.33,513e520.
    Tang,M.,Zhou,C.,Meng,L.,Mao,D.,Peng,C.,Zhu,Y.,Huang,D.,Tan,Z.,Chen,C.,Liu,C.,Zhang,D.,2016.Overexpression of OsSPL9 enhances accumulation of Cu in rice grain and improves its digestibility and metabolism.J.Genet.Genomics43,673e676.
    Tong,H.,Jin,Y.,Liu,W.,Li,F.,Fang,J.,Yin,Y.,Qian,Q.,Zhu,L.,Chu,C.,2009.DWARFAND LOW-TILLERING,a new member of the GRAS family,plays positive roles in brassinosteroid signaling in rice.Plant J.58,803e816.
    Wang,H.,Wang,H.,2015.The miR156/SPL module,a regulatory hub and versatile toolbox,gears up crops for enhanced agronomic traits.Mol.Plant 8,677e688.
    Wang,L.,Sun,S.,Jin,J.,Fu,D.,Yang,X.,Weng,X.,Xu,C.,Li,X.,Xiao,J.,Zhang,Q.,2015a.Coordinated regulation of vegetative and reproductive branching in rice.Proc.Natl.Acad.Sci.U.S.A.112,15504e15509.
    Wang,L.,Zhang,Q.,2017.Boosting rice yield by fine-tuning SPL gene expression.Trends Plant Sci.22,643e646.
    Wang,Q.L.,Sun,A.Z.,Chen,S.T.,Chen,L.S.,Guo,F.Q.,2018a.SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice.Nat.Plants 4,280e288.
    Wang,S.,Li,S.,Liu,Q.,Wu,K.,Zhang,J.,Wang,S.,Wang,Y.,Chen,X.,Zhang,Y.,Gao,C.,Wang,F.,Huang,H.,Fu,X.,2015b.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.Nat.Genet.47,949e954.
    Wang,S.,Wu,K.,Qian,Q.,Liu,Q.,Li,Q.,Pan,Y.,Ye,Y.,Liu,X.,Wang,J.,Zhang,J.,Li,S.,Wu,Y.,Fu,X.,2017.Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield.Cell Res.27,1142e1156.
    Wang,S.,Wu,K.,Yuan,Q.,Liu,X.,Liu,Z.,Lin,X.,Zeng,R.,Zhu,H.,Dong,G.,Qian,Q.,Zhang,G.,Fu,X.,2012.Control of grain size,shape and quality by OsSPL16 in rice.Nat.Genet.44,950e954.
    Wang,W.,Mauleon,R.,Hu,Z.,Chebotarov,D.,Tai,S.,Wu,Z.,Li,M.,Zheng,T.,Fuentes,R.R.,Zhang,F.,Mansueto,L.,Copetti,D.,Sanciangco,M.,Palis,K.C.,Xu,J.,Sun,C.,Fu,B.,Zhang,H.,Gao,Y.,Zhao,X.,Shen,F.,Cui,X.,Yu,H.,Li,Z.,Chen,M.,Detras,J.,Zhou,Y.,Zhang,X.,Zhao,Y.,Kudrna,D.,Wang,C.,Li,R.,Jia,B.,Lu,J.,He,X.,Dong,Z.,Xu,J.,Li,Y.,Wang,M.,Shi,J.,Li,J.,Zhang,D.,Lee,S.,Hu,W.,Poliakov,A.,Dubchak,I.,Ulat,V.J.,Borja,F.N.,Mendoza,J.R.,Ali,J.,Li,J.,Gao,Q.,Niu,Y.,Yue,Z.,Naredo,M.E.B.,Talag,J.,Wang,X.,Li,J.,Fang,X.,Yin,Y.,Glaszmann,J.C.,Zhang,J.,Li,J.,Hamilton,R.S.,Wing,R.A.,Ruan,J.,Zhang,G.,Wei,C.,Alexandrov,N.,McNally,K.L.,Li,Z.,Leung,H.,2018b.Genomic variation in 3,010 diverse accessions of Asian cultivated rice.Nature 557,43e49.
    Wang,Y.,Xiong,G.,Hu,J.,Jiang,L.,Yu,H.,Xu,J.,Fang,Y.,Zeng,L.,Xu,E.,Xu,J.,Ye,W.,Meng,X.,Liu,R.,Chen,H.,Jing,Y.,Wang,Y.,Zhu,X.,Li,J.,Qian,Q.,2015c.Copy number variation at the GL7 locus contributes to grain size diversity in rice.Nat.Genet.47,944e948.
    Xie,K.,Wu,C.,Xiong,L.,2006.Genomic organization,differential expression,and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice.Plant Physiol.142,280e293.
    Xing,Y.,Zhang,Q.,2010.Genetic and molecular bases of rice yield.Annu.Rev.Plant Biol.61,421e442.
    Yan,C.J.,Zhou,J.H.,Yan,S.,Chen,F.,Yeboah,M.,Tang,S.Z.,Liang,G.H.,Gu,M.H.,2007.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice(Oryza sativa L.).Theor.Appl.Genet.115,1093e1100.
    Yang,Z.,Wang,X.,Gu,S.,Hu,Z.,Xu,H.,Xu,C.,2008.Comparative study of SBP-box gene family in Arabidopsis and rice.Gene 407,1e11.
    Yi,X.,Zhang,Z.,Zeng,S.,Tian,C.,Peng,J.,Li,M.,Lu,Y.,Meng,Q.,Gu,M.,Yan,C.,2011.Introgression of qPE9-1 allele,conferring the panicle erectness,leads to the decrease of grain yield per plant in japonica rice(Oryza sativa L.).J.Genet.Genomics 38,217e223.
    Yu,J.,Miao,J.,Zhang,Z.,Xiong,H.,Zhu,X.,Sun,X.,Pan,Y.,Liang,Y.,Zhang,Q.,Rashid,M.A.R.,Li,J.,Zhang,H.,Li,Z.,2018.Alternative splicing of OsLG3b controls grain length and yield in japonica rice.Plant Biotechnol.J.16,1667e1678.
    Yu,J.,Xiong,H.,Zhu,X.,Zhang,H.,Li,H.,Miao,J.,Wang,W.,Tang,Z.,Zhang,Z.,Yao,G.,Zhang,Q.,Pan,Y.,Wang,X.,Rashid,M.A.R.,Li,J.,Gao,Y.,Li,Z.,Yang,W.,Fu,X.,Li,Z.,2017.OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap.BMC Biol.15,28.
    Yuan,H.,Fan,S.,Huang,J.,Zhan,S.,Wang,S.,Gao,P.,Chen,W.,Tu,B.,Ma,B.,Wang,Y.,Qin,P.,Li,S.,2017.08SG2/OsBAK1 regulates grain size and number,and functions differently in indica and japonica backgrounds in rice.Rice 10,25.
    Yue,E.,Li,C.,Li,Y.,Liu,Z.,Xu,J.-H.,2017a.MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice(Oryza sativa).Plant Mol.Biol.94,469e480.
    Yue,E.,Liu,Z.,Li,C.,Li,Y.,Liu,Q.,Xu,J.H.,2017b.Overexpression of miR529a confers enhanced resistance to oxidative stress in rice(Oryza sativa L.).Plant Cell Rep.36,1171e1182.
    Zhang,L.,Yu,H.,Ma,B.,Liu,G.,Wang,J.,Wang,J.,Gao,R.,Li,J.,Liu,J.,Xu,J.,Zhang,Y.,Li,Q.,Huang,X.,Xu,J.,Li,J.,Qian,Q.,Han,B.,He,Z.,Li,J.,2017.A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice.Nat.Commun.8,14789.
    Zhao,H.,Yao,W.,Ouyang,Y.,Yang,W.,Wang,G.,Lian,X.,Xing,Y.,Chen,L.,Xie,W.,2015.RiceVarMap:a comprehensive database of rice genomic variations.Nucleic Acids Res.43,D1018e D1022.
    Zheng,T.Q.,Hong,Y.U.,Zhang,H.L.,Zhichao,W.U.,Wang,W.S.,Tai,S.S.,Lu,C.,Jue,R.,Wei,C.C.,Shi,J.X.,2015.Rice functional genomics and breeding database(RFGB)-3K-rice SNP and InDel sub-database.Chin.Sci.Bull.60,367.
    Zhou,F.,Lin,Q.,Zhu,L.,Ren,Y.,Zhou,K.,Shabek,N.,Wu,F.,Mao,H.,Dong,W.,Gan,L.,2013.D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling.Nature 504,406e410.
    Zhou,Y.,Miao,J.,Gu,H.,Peng,X.,Leburu,M.,Yuan,F.,Gu,H.,Gao,Y.,Tao,Y.,Zhu,J.,2015.Natural variations in SLG7 regulate grain shape in Rice.Genetics 201,1591e1599.
    Zhou,Y.,Zhu,J.,Li,Z.,Yi,C.,Liu,J.,Zhang,H.,Tang,S.,Gu,M.,Liang,G.,2009.Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.Genetics 183,315e324.
    Zhu,Z.,Tan,L.,Fu,Y.,Liu,F.,Cai,H.,Xie,D.,Wu,F.,Wu,J.,Matsumoto,T.,Sun,C.,2013.Genetic control of inflorescence architecture during rice domestication.Nat.Commun.4,2200.
    Zuo,J.,Li,J.,2014.Molecular genetic dissection of quantitative trait loci regulating rice grain size.Annu.Rev.Genet.48,99e118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700