用户名: 密码: 验证码:
密度羽流构型特征、控制因素及其对深水沉积的启示——对河口和其他环境中密度羽流进行的全球卫星调查
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A global satellite survey of density plumes at river mouths and at other environments: Plume configurations, external controls, and implications for deep-water sedimentation
  • 作者:SHANMUGAM ; G
  • 英文作者:SHANMUGAM G;Department of Earth and Environmental Sciences, The University of Texas at Arlington;
  • 关键词:NASA卫星 ; 密度羽流 ; 河口环境 ; 控制因素 ; 异重流 ; 海底扇 ; 深水沉积储集层
  • 英文关键词:NASA satellites;;density plumes;;river-mouth environments;;controlling factors;;hyperpycnal flows;;submarine fans;;deep-water reservoirs
  • 中文刊名:SKYK
  • 英文刊名:Petroleum Exploration and Development
  • 机构:Department of Earth and Environmental Sciences, The University of Texas at Arlington;
  • 出版日期:2018-07-19
  • 出版单位:石油勘探与开发
  • 年:2018
  • 期:v.45;No.265
  • 语种:中文;
  • 页:SKYK201804008
  • 页数:18
  • CN:04
  • ISSN:11-2360/TE
  • 分类号:75-92
摘要
基于对美国国家航空和航天局(NASA)数千幅卫星图像的系统汇编,对45个密度羽流(包含21条主要河流和6种不同的沉积环境)进行实例分析,首次揭示现代环境中各种密度羽流自然构型变化特征,指出密度羽流至少有24种构型。研究发现密度羽流受多达18种包括海洋、气象和其他复杂因素控制:(1)中国黄河受到潮汐和河道变化的影响;(2)中国长江在冬季受陆架潮流和潮汐垂直混合的影响;(3)阿根廷和乌拉圭里约热内卢的拉普拉塔河口受洋流控制;(4)美国加利福尼亚州旧金山湾受潮流影响;(5)印度洋马纳尔湾受季风环流影响;(6)埃及红海受风成尘埃影响;(7)美国大西洋边缘受飓风气旋影响;(8)斯里兰卡受海啸影响;(9)阿拉斯加柯柏河受高坡辫状河三角洲的影响;(10)伊利湖受湖震影响;(11)纳米比亚大陆边缘受上升涌流影响;(12)白令海受浮游生物的影响;(13)大西洋大巴哈马海岸受鱼类活动影响;(14)印度尼西亚受火山活动影响;(15)格陵兰岛受冰川融化的影响;(16)南太平洋受珊瑚礁的影响;(17)卡罗莱纳州大陆凸起受地形坑洼的影响;(18)日本大槌湾受内部狂浪控制。河流-洪水成因的异重流以泥质为主,且往往出现在内陆架靠近海岸线的沉积环境中;从成因机制上讲,异重流无法通过陆架把砂砾输送到深海;此外,野外观察表明这类异重流不能在深水环境中形成米级厚度的砂层。因此,河流-洪水触发的异重岩不可能成为深水沉积储集层,除非另有证据。
        The U. S. National Aeronautics and Space Administration(NASA) has archived thousands of satellite images of density plumes in its online publishing outlet called 'Earth Observatory' since 1999. Although these images are in the public domain, there has not been any systematic compilation of configurations of density plumes associated with various sedimentary environments and processes. This article, based on 45 case studies covering 21 major rivers(e.g., Amazon, Betsiboka, Congo [Zaire], Copper, Hugli [Ganges], Mackenzie, Mississippi, Niger, Nile, Rhone, Rio de la Plata, Yellow, Yangtze, Zambezi, etc.) and six different depositional environments(i.e., marine, lacustrine, estuarine, lagoon, bay, and reef), is the first attempt in illustrating natural variability of configurations of density plumes in modern environments. There are, at least, 24 configurations of density plumes. An important finding of this study is that density plumes are controlled by a plethora of 18 oceanographic, meteorological, and other external factors. Examples are: 1) Yellow River in China by tidal shear front and by a change in river course; 2) Yangtze River in China by shelf currents and vertical mixing by tides in winter months; 3) Rio de la Plata Estuary in Argentina and Uruguay by Ocean currents; 4) San Francisco Bay in California by tidal currents; 5) Gulf of Manner in the Indian Ocean by monsoonal currents; 6) Egypt in Red Sea by Elian dust; 7) U.S. Atlantic margin by cyclones; 8) Sri Lanka by tsunamis; 9) Copper River in Alaska by high-gradient braid delta; 10) Lake Erie by seiche; 11) continental margin off Namibia by upwelling; 12) Bering Sea by phytoplankton; 13) the Great Bahama Bank in the Atlantic Ocean by fish activity; 14) Indonesia by volcanic activity; 15) Greenland by glacial melt; 16) South Pacific Ocean by coral reef; 17) Carolina continental Rise by pockmarks; and 18) Otsuchi Bay in Japan by internal bore. The prevailing trend in promoting a single type of river-flood triggered hyperpycnal flow is flawed because there are 16 types of hyperpycnal flows. River-flood derived hyperpycnal flows are muddy in texture and they occur close to the shoreline in inner shelf environments. Hyperpycnal flows are not viable transport mechanisms of sand and gravel across the shelf into the deep sea. The available field observations suggest that they do not form meter-thick sand layers in deep water settings. For the above reasons, river-flood triggered hyperpycnites are considered unsuitable for serving as petroleum reservoirs in deep-water environments until proven otherwise.
引文
[1]NASA(National Aeronautics and Space Administration).Earth observatory[EB/OL].(2018-02-02)[2018-02-28].https://earthobservatory.nasa.gov/.
    [2]WALKER N D.Satellite assessment of Mississippi River discharge plume variability:Causes and predictability[J].Remote Sensing of Environment,1996,58(1):21-35.
    [3]WANG H,BI N,WANG Y,et al.Tide-modulated hyperpycnal flows off the Huanghe(Yellow River)mouth,China[J].Earth Surface Processes and Landforms,2010,35(11):1315-1329.
    [4]LIU J P,LI A C,XU K H,et al.Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J].Continental Shelf Research,2006,26(17):2141-2156.
    [5]LUO Z,ZHU J,WU H,et al.Dynamics of the sediment plume over the Yangtze Bank in the Yellow and East China Seas[J].Journal of Geophysical Research:Oceans,2017,122(12):10073-10090.
    [6]MCPHERSON J G,SHANMUGAM G,MOIOLA R J.Fan-deltas and braid deltas:Varieties of coarse-grained deltas[J].Geological Society of America Bulletin,1987,99(3):331.
    [7]IMRAN J,SYVITSKI J.Impact of extreme river events on coastal oceans[J].Oceanography,2000,13(3):85-92.
    [8]BARNARD P L,HANES D M,RUBIN D M,et al.Giant sand waves at the mouth of San Francisco Bay[J].Eos Transactions American Geophysical Union,2006,87(29):285-289.
    [9]GONZALEZ-SILVERA A,SANTAMARIA-DEL-ANGEL E,MILLáN-Nú?EZ R.Spatial and temporal variability of the Brazil-Malvinas Confluence and the La Plata Plume as seen by Sea Wi FS and AVHRR imagery[J].Journal of Geophysical Research:Oceans,2006,111(C6):1-17.
    [10]MATANO R P,PALMA E D,PIOLA A R.The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf circulation[J].Ocean Science,2010,6(4):983-995.
    [11]ARNAU P,LIQUETE C,CANALS M.River mouth plume events and their dispersal in the Northwestern Mediterranean Sea[J].Oceanography,2004,17(3):22-31.
    [12]PELIZ A,MARCHCHESIELLO P,SANTOS A M P,et al.Surface circulation in the Gulf of Cadiz:2.Inflow-outflow coupling and the Gulf of Cadiz slope current[J].Journal of Geophysical Research:Oceans,2009,114(C3):1-16.
    [13]SHANMUGAM G.Modern internal waves and internal tides along oceanic pycnoclines:Challenges and implications for ancient deepmarine baroclinic sands[J].AAPG Bulletin,2013,97(5):767-811.
    [14]MASUNAGA E,HOMMA H,YAMAZAKI H,et al.Mixing and sediment resuspension associated with internal bores in a shallow bay[J].Continental Shelf Research,2015,110:85-99.
    [15]BALASUBRAMANIAN T,KHAN S A,RAJENDRAN N.Estuaries of India:State of the art report[M].Annamalai Nagar,India:Environmental Information System Centre,Centre of Advanced Study in Marine Biology,Annamalai University,2002:138-145.
    [16]JAGADEESAN L,JYOTHIBABU R,ANJUSHA A,et al.Ocean currents structuring the mesozooplankton in the Gulf of Mannar and the Palk Bay,southeast coast of India[J].Progress in Oceanography,2013,110(3):27-48.
    [17]SRIDHAR P N.Understanding the suspended sediment dynamics in the coastal waters of the Bay of Bengal using high resolution ocean colour data[J].Current Science,2008,94(11):1499-1502.
    [18]MIKHAILOV V N,KRAVTSOVA V I,ISUPOVA M V.Impact of reservoirs on the hydrological regime and morphology of the lower reaches and delta of the Zambezi River(Mozambique)[J].Water Resources,2015,42(2):170-185.
    [19]SHANMUGAM G.Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons[J].Marine and Petroleum Geology,2003,20(5):471-491.
    [20]SHILLINGTON F A,HUTCHINGS L,PROBYN T A,et al.Filaments and the Benguela frontal zone:Offshore advection or recirculating loops?[J].South African Journal of Marine Science,1992,12(1):207-218.
    [21]SHANMUGAM G.The constructive functions of tropical cyclones and tsunamis on deep-water sand deposition during sea level highstand:Implications for petroleum exploration[J].AAPG Bulletin,2008,92(4):443-471.
    [22]SHANMUGAM G.The tsunamite problem[J].Journal of Sedimentary Research,2006,76(5):718-730.
    [23]CHU V W.Greenland ice sheet hydrology[J].Progress in Physical Geography,2013,38(1):19-54.
    [24]CUFFEY K M,PATERSON W S B.The Physics of glaciers.Burlington[M].MA:Butterworth-Heinemann,2010.
    [25]BROECKER W S,SANYAL A,TAKAHASHI T.The origin of Bahamian Whitings revisited[J].Geophysical Research Letters,2000,27(22):3759-3760.
    [26]DIERSSEN H M,ZIMMERMAN R C,BURDIGE D J.Optics and remote sensing of Bahamian carbonate sediment whitings and potential relationship to wind-driven Langmuir circulation[J].Biogeosciences,2009,6(3):487-500.
    [27]PURKIS S,CAVALCANTE G,ROHTLA L,et al.Hydrodynamic control of whitings on Great Bahama Bank[J].Geology,2017,45(10):939-942.
    [28]KHANNA D R,YADAV P R.Biology of coelenterata[M].New Delhi:Discovery Publishing,2008.
    [29]SHIPLEY S,SARNA-WOJCICKI A M.Distribution,thickness,and mass of late pleistocene and holocene tephra from major volcanoes in the northwestern United States:A preliminary assessment of hazards from volcanic ejecta to nuclear reactors in the Pacific Northwest[R].Reston Virginia:US Geological Survey,1983.
    [30]PAULL C K,USSLER W,BOROWSKI W S,et al.Methane-rich plumes on the Carolina continental rise:Associations with gas hydrates[J].Geology,1995,23(1):89.
    [31]DE JONG M P C,BATTJES J A.Low-frequency sea waves generated by atmospheric convection cells[J].Journal of Geophysical Research:Oceans,2004,109(1):1-18.
    [32]FRIHY O E,FANOS A M,KHAFAGY A A,et al.Patterns of nearshore sediment transport along the Nile Delta,Egypt[J].Coastal Engineering,1991,15(5):409-429.
    [33]FOREL F A.Les ravins sous-lacustres des fleuves glaciaires[M].Paris:Comptes Rendus de l’Academie des Sciences,1885.
    [34]BATES C C.Rational theory of delta formation[J].AAPG Bulletin,1953,37(9):2119-2162.
    [35]WRIGHT L D,YANG Z S,BORNHOLD B D,et al.Hyperpycnal plumes and plume fronts over the Huanghe(Yellow River)delta front[J].Geo-Marine Letters,1986,6(2):97-105.
    [36]MULDER T,SYVITSKI J P,MIGEON S,et al.Marine hyperpycnal flows:Initiation,behavior and related deposits:A review[J].Marine and Petroleum Geology,2003,20(6):861-882.
    [37]NOAA(National Oceanic and Atmospheric Administration).NOAA fisheries glossary:River plume[M].Washington D.C.:NOAA,2006.
    [38]PIERSON T C,COSTA J E.Arheologic classification of subaerial sediment-water flows[C]//COSTA J E,WIECZOREK G F.Debris flows/avalanches:Process,recognition,and mitigation.Boulder,Colorado,USA:Geological Society of America,1987.
    [39]SHANMUGAM G.New perspectives on deep-water sandstones,origin,recognition,initiation,and reservoir quality[M]//ROGER M S.Handbook of petroleum exploration and production.Amsterdam:Elsevier,2012.
    [40]COLEMAN J M,PRIOR D B.Deltaic environments[C]//SCHOLLE P A,SPEARING D.Sandstone depositional environments:AAPG Memoir 31.Tulsa,OK:AAPG,1982:139-178.
    [41]YU J B,FU Y Q,LI Y Z,et al.Effects of water discharge and sediment load on evolution of modern Yellow River Delta,China,over the period from 1976 to 2009[J].Biogeosciences,2011,8(2):2427-2435.
    [42]MILLIMAN J D.River inputs[M].Newyork:Academic Press,2001.
    [43]MILLIMAN J D,MEADE R H.World-wide delivery of river sediment to the oceans[J].The Journal of Geology,1983(1):1-21.
    [44]SHANMUGAM G.The hyperpycnite problem[J].Journal of Palaeogeography,2018,7(3):in press.
    [45]LI G X,TANG Z H,YUE S,et al.Sedimentation in the shear front off the Yellow River mouth[J].Continental Shelf Research,2001(6):607-625.
    [46]WU J REN J,LIU H,et al.Trapping and escaping processes of Yangtze River-derived sediments to the East China Sea[C]//CLIFT P D,HARFF J,WU J,et al.About this title:River-dominated shelf sediments of East Asian Seas.London:Geological Society,2016:153-169.
    [47]WANG H,YANG Z,SAITO Y,et al.Interannual and seasonal variation of the Huanghe(Yellow River)water discharge over the past 50 years:Connections to impacts from ENSO events and dams[J].Global and Planetary Change,2006,50(3):212-225.
    [48]GALLOWAY W E.Sediments and stratigraphic framework of the Copper River fan-delta,Alaska[J].Journal of Sedimentary Research,1976,46(3):726-737.
    [49]FRAMI?AN M B,BROWN O B.Study of the Río de la Plata turbidity front,Part 1:Spatial and temporal distribution[J].Continental Shelf Research,1996,16(10):1259-1282.
    [50]FOSSATI M,PIEDRA-CUEVA I.A 3D hydrodynamic numerical model of the Río de la Plata and Montevideo’s coastal zone[J].Applied Mathematical Modelling,2013,37(3):1310-1332.
    [51]FOSSATI M,CAYOCCA F,PIEDRA-CUEVA I.Fine sediment dynamics in the Río de la Plata[J].Advances in Geosciences,2014,39:75-80.
    [52]KALE V S.Geomorphic effects of monsoon floods on Indian Rivers[J].Flood Problem and Management in South Asia,2003,28(1):65-84.
    [53]MANKOFF K D,STRANEO F,CENEDESE C,et al.Structure and dynamics of a subglacial discharge plume in a Greenlandic Fjord[J].Journal of Geophysical Research,2016,121(12):8670-8688.
    [54]GRIMA C,BLANKENSHIP D D,YOUNG D A,et al.Surface slope control on firn density at Thwaites Glacier,West Antarctica:Results from airborne radar sounding[J].Geophysical Research Letters,2014,41(19):6787-6794.
    [55]SCAMBOS T A,BELL R E,ALLEY R B,et al.How much,how fast?:A science review and outlook for research on the instability of Antarctica’s Thwaites Glacier in the 21st century[J].Global and Planetary Change,2017,153:16-34.
    [56]PURDY E G.Recent calcium carbonate facies of the Great Bahama Bank.2.Sedimentary facies[J].Journal of Geology,1963,71(4):472-497.
    [57]CLOUD P E,Jr.Environmeont of calcium carbonate deposition west of Andros Island,Bahamas[J].Limnology&Oceanography,1963,8(4):494.
    [58]SHINN E A,STEINEN R P,LIDZ B H,et al.Whitings,a sedimentologic dilemma[J].Journal of Sedimentary Research,1989,59(1):147-161.
    [59]PAULL C K,MATSUMOTO R,WALLACE P J,et al.Proceedings of the ocean drilling program,scientific results[M].College Station,TX:Texas A&M University,2000.
    [60]RUPPEL C D,KESSLER J D.The interaction of climate change and methane hydrates[J].Reviews of Geophysics,2017,55(1):126-168.
    [61]HAWATI P,NUGROHO S D,ANGGORO S,et al.Waves induce sediment transport at coastal region of Timbulsloko Demak[J].IOP Conference Series:Earth and Environmental Science,2017,55(1):12-48.
    [62]PARKER G,TONIOLO H.Note on the analysis of plunging of density flows[J].Journal of Hydraulic Engineering,2007,133(6):690-694.
    [63]MULDER T,SYVITSKI J P.Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J].The Journal of Geology,1995,103(3):285-299.
    [64]MAREN D S,WINTERWERP J C,WU B S,et al.Modelling hyperconcentrated flow in the Yellow River[J].Earth Surface Processes and Landforms,2010,34(4):596-612.
    [65]FAN H,HUANG H,ZENG T Q,et al.River mouth bar formation,riverbed aggradation and channel migration in the modern Huanghe(Yellow)River delta,China[J].Geomorphology,2006,74(1):124-136.
    [66]YANG T,CAO Y,WANG Y.A new discovery of the Early Cretaceous supercritical hyperpycnal flow deposits on Lingshan Island,East China[J].Acta Geologica Sinica(English Edition),2017,91(2):749-750.
    [67]LIU J T,WANG Y H,YANG R J,et al.Cyclone-induced hyperpycnal turbidity currents in a submarine canyon[J].Journal of Geophysical Research:Oceans,2012,117(4):1-12.
    [68]DALLIMORE C J,IMBERGER J,HODGES B R.Modeling a plunging underflow[J].Journal of Hydraulic Engineering,2004,130(11):1068-1076.
    [69]PLINK-BJ?RKLUND P,STEEL R J.Initiation of turbidity currents:Outcrop evidence for Eocene hyperpycnal flow turbidites[J].Sedimentary Geology,2004,165(1/2):29-52.
    [70]KOSTIC S,PARKER G,MARR J G.Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water[J].Journal of Sedimentary Research,2002,72(3):353-362.
    [71]KOSTIC S,PARKER G.Progradational sand-mud deltas in lakes and reservoirs.Part 2.Experiment and numerical simulation[J].Journal of Hydraulic Research,2003,41(2):141-152.
    [72]LAMB M P,MCELROY B,KOPRIVA B,et al.Linking river-flood dynamics to hyperpycnal-plume deposits:Experiments,theory,and geological implications[J].Geological Society of America Bulletin,2010,122(9):1389-1400.
    [73]ZAVALA C,ARCURI M.Intrabasinal and extrabasinal turbidites:Origin and distinctive characteristics[J].Sedimentary Geology,2016,337:36-54.
    [74]LUNA T M,FERNáNDEZ E,DíAZ M J.Derivation of a multilayer approach to model suspended sediment transport:Application to hyperpycnal and hypopycnal plumes[J].Communication in Computational Physics,2017,22(5):1439-1485.
    [75]GAO S,WANG D,YANG Y,et al.Holocene sedimentary systems on a broad continental shelf with abundant river input:process-product relationships[J].Geological Society,London,Special Publications,2016,429(1):223-259.
    [76]YANG R,JIN Z,LOON A J,et al.Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin,central China:Implications for unconventional petroleum development[J].AAPG Bulletin,2017,101(1):95-117.
    [77]SHANMUGAM G.Climatic and tectonic controls 338 of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin,central China:Implications for unconventional petroleum development:Discussion[J].AAPG Bulletin,2018,102:in press.
    [78]WRIGHT L D,WISEMAN W J,BORNHOLD B D,et al.Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J].Nature,1988(6165):629-632.
    [79]MUTTI E.Turbidite sandstones[M].Milan,Italy:Agip Special Publication,1992:275.
    [80]WARRICK J A,SIMMS A R,RITCHIE A,et al.Hyperpycnal plume-derived fans in the Santa Barbara Channel,California[J].Geophysical Research Letters,2013,40(10):2081-2086.
    [81]STEEL E,SIMMS A R,WARRICK J,et al.Highstand shelf fans:The role of buoyancy reversal in the deposition of a new type of shelf sand body[J].Geological Society of America Bulletin,2016,128(11):1717-1724.
    [82]MUTTI E,DAVOLI G,TINTERRI R.Flood-related gravity-flow deposits in fluvial and fluvio-deltaic depositional systems and their sequence-stratigraphic implications[R]//Tremp,Spagna:Second High-Resolution Sequence Stratigraphy Conference,1994:131-136.
    [83]SHANMUGAM G.Submarine fans:A critical retrospective(1950-2015)[J].Journal of Palaeogeography,2016,5(2):110-184.
    [84]SHANMUGAM G.Slides,slumps,debris flows,turbidity currents,hyperpycnal flows,and bottom currents[C]//COCHRAN J K.Encyclopedia of ocean sciences.3rd ed.Porter Hoagland:Elsevier/Academic Press,2018:in press.
    [85]TURNER J S.Buoyancy effects in fluids,Series:Cambridge monographs on mechanics[M].Cambridge:Cambridge University Press,1980:412.
    [86]DOTT R H.Dynamics of subaqueous gravity depositional processes[J].AAPG Bulletin,1963,47(1):104-128.
    [87]SANDERS J E.Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms[C]//MIDDLETON G V.Primary sedimentary structures and their hydrodynamic interpretation.Tulsa,OK:The Society of Economic Paleontologists and Mineralogists,1965:192-219.
    [88]SHANMUGAM G.High-density turbidity currents:Are they sandy debris flows?[J].Journal of Sedimentary Research,1996,66(1):2-10.
    [89]SHANMUGAM G.Global case studies of soft-sediment deformation structures(SSDS):Definitions,classifications,advances,origins,and problems[J].Journal of Palaeogeography,2017,6(4):251-320.
    [90]PAN S,LIU H,ZAVALA C,et al.Sublacustrine hyperpycnal channel-fan system in a large depression basin:A case study of Nen 1Member,Cretaceous Nenjiang Formation in the Songliao Basin,NE China[J].Petroleum Exploration and Development,2017,44(6):911-922.
    [91]TALLING P J.On the triggers,resulting flow types and frequencies of subaqueous sediment density flows in different settings[J].Marine Geology,2014,352(3):155-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700