用户名: 密码: 验证码:
Predicting recrystallized grain size in friction stir processed 304L stainless steel
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Predicting recrystallized grain size in friction stir processed 304L stainless steel
  • 作者:M.P.Miles ; T.W.Nelson ; C.Gunter ; F.C.Liu ; L.Fourment ; T.Mathis
  • 英文作者:M.P.Miles;T.W.Nelson;C.Gunter;F.C.Liu;L.Fourment;T.Mathis;Manufacturing Engineering Department,Brigham Young University;Centre de Mise en Forme des Materiaux,Mines ParisTech;
  • 英文关键词:Stainless steel;;Numerical simulation;;Friction stir welding;;Recrystallized grain size
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Manufacturing Engineering Department,Brigham Young University;Centre de Mise en Forme des Materiaux,Mines ParisTech;
  • 出版日期:2019-04-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by the National Science Foundation grant CMMI-1405508
  • 语种:英文;
  • 页:CLKJ201904004
  • 页数:8
  • CN:04
  • ISSN:21-1315/TG
  • 分类号:29-36
摘要
A major dilemma faced in the nuclear industry is repair of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for repair, intergranular cracks develop in the heat-affected zone(HAZ). Friction stir processing(FSP), which operates at much lower peak temperatures than fusion welding, was studied as a crack repair method for irradiated 304 L stainless steel. A numerical simulation of the FSP process in 304 L was developed to predict temperatures and recrystallized grain size in the stir zone. The model employed an Eulerian finite element approach,where flow stresses for a large range of strain rates and temperatures inherent in FSP were used as input. Temperature predictions in three locations near the stir zone were accurate to within 4%, while prediction of welding power was accurate to within 5% of experimental measurements. The predicted recrystallized grain sizes ranged from 7.6 to 10.6 μm, while the experimentally measured grains sizes in the same locations ranged from 6.0 to 7.6 μm. The maximum error in predicted recrystallized grain size was about 39%, but the associated stir zone hardness from the predicted grain sizes was only different from the experiment by about 10%.
        A major dilemma faced in the nuclear industry is repair of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for repair, intergranular cracks develop in the heat-affected zone(HAZ). Friction stir processing(FSP), which operates at much lower peak temperatures than fusion welding, was studied as a crack repair method for irradiated 304 L stainless steel. A numerical simulation of the FSP process in 304 L was developed to predict temperatures and recrystallized grain size in the stir zone. The model employed an Eulerian finite element approach,where flow stresses for a large range of strain rates and temperatures inherent in FSP were used as input. Temperature predictions in three locations near the stir zone were accurate to within 4%, while prediction of welding power was accurate to within 5% of experimental measurements. The predicted recrystallized grain sizes ranged from 7.6 to 10.6 μm, while the experimentally measured grains sizes in the same locations ranged from 6.0 to 7.6 μm. The maximum error in predicted recrystallized grain size was about 39%, but the associated stir zone hardness from the predicted grain sizes was only different from the experiment by about 10%.
引文
[1]K.Asano,S.Nishimura,Y.Saito,H.Sakamoto,Y.Yamada,T.Kato,T.Hashimoto,J.Nucl.Mater.264(1999)1-9.
    [2]W.R.Kanne,M.R.Louthan,D.T.Rankin,M.H.Tosten,Mater.Charact.43(1999)203-214.
    [3]K.Tsuchiya,H.Kawamura,G.Kalinin,J.Nucl.Mater.283(2000)1210-1214.
    [4]C.A.Wang,M.L.Grossbeck,Algan H,B.A.Chin,B.A.Chin,J.Nucl.Mater.239(1996)85-89.
    [5]M.H.Tosten,S.L.West,W.R.Kanne,B.J.Cross,Weld.J.86(2007)245S-252S.
    [6]Z.Feng,G.Wilkowski,ASME,Arlington,VA10th International Conference on Nuclear Engineering2002,10th International Conference on Nuclear Engineering(2002)399-406.
    [7]N.Yurioka,Y.Horii,Sci.Technol.Weld.Join.11(2006)255-264.
    [8]W.R.Kanne,G.T.Chandler,D.Z.Nelson,E.A.Francoferreira,J.Nucl.Mater.225(1995)69-75.
    [9]C.A.Wang,M.L.Grossbeck,H.Aglan,B.A.Chin,J.Nucl.Mater.239(1996)85-89.
    [10]C.A.Wang,M.L.Grossbeck,N.B.Potluri,B.A.Chin,J.Nucl.Mater.233(1996)213-217.
    [11]Z.Feng,K.Wolfe,E.Willis,A computational tool for welding repair of irradiated materials,Proceedings of the 21st Conference on Nuclear Engineering 1(2013)1-8.
    [12]S.Li,M.L.Grossbeck,Z.Zhang,W.Shen,B.A.Chin,Weld.J.90(2011)19S-26S.
    [13]Q.Yang,B.L.Xiao,Z.Y.Ma,Metall.Mater.Trans.A 43(2012)2094-2109.
    [14]F.Y.Tsai,P.W.Kao,Mater.Lett.80(2012)40-42.
    [15]N.Sun,D.Apelian,JOM 63(2011)44-50.
    [16]X.L.Feng,H.J.Liu,S.S.Babu,Scripta Mater.65(2011)1057-1060.
    [17]F.C.Liu,Z.Y.Ma,Scripta Mater.62(2010)125-128.
    [18]B.C.Liechty,B.W.Webb,Int.J.Mach.Tool.Manuf.48(2008)1474-1485.
    [19]R.S.Mishra,Z.Y.Ma,Mater.Sci.Eng.R.50(2005)1-78.
    [20]N.Saito,I.Shigematsu,T.Komaya,T.Tamaki,G.Yamauchi,M.Nakamura,J.Mater.Sci.Lett.20(2001)1913-1915.
    [21]R.S.Mishra,M.W.Mahoney,Superplasticity in Advanced Materials(2001)507-512,Icsam-2000 357-3.
    [22]C.J.Sterling,T.W.Nelson,C.D.Sorensen,M.Posada,Effects of Friction Stir Processing on the Microstructure and Mechanical Properties of Fusion Welded304L Stainless Steel,Research Report,Office of Naval Research,2004,pp.1-7.
    [23]C.Gunter,M.P.Miles,F.C.Liu,T.W.Nelson,J.Mater.Sci.Technol.34(2018)140-147.
    [24]S.H.C.Park,Y.S.Sato,H.Kokawa,K.Okamoto,S.Hirano,M.Inagaki,Scripta Mater.49(2003)1175-1180.
    [25]C.D.Sorensen,T.W.Nelson,ASM,Pine Mountain,GAProceedings of the 7th International Conference on Trends in Welding Research2005,Proceedings of the 7th International Conference on Trends in Welding Research(2005)441-446.
    [26]S.H.C.Park,Y.S.Sato,H.Kokawa,K.Okamoto,S.Hirano,M.Inagaki,Scripta Mater.51(2004)101-105.
    [27]O.Lorrain,J.Serri,V.Favier,H.Zahrouni,M.E.Hadrouz,J.Mech.Mater.Struct.4(2009)351-369.
    [28]G.Buffa,J.Hua,R.Shivpuri,L.Fratini,Mater.Sci.Eng.A 419(2006)389-396.
    [29]S.Guerdoux,L.Fourment,Model.Simul.Mater.Sci.17(2009)1-32.
    [30]S.A.Transvalor,Forge NxT,2009.
    [31]M.Assidi,L.Fourment,S.Guerdoux,T.Nelson,Int.J.Mach.Tool.Manuf.50(2010)143-155.
    [32]B.Meyghani,M.Awang,S.Emamian,N.M.Khalid,Developing a Finite Element Model for Thermal Analysis of Friction Stir Welding by Calculating Temperature Dependent Friction Coefficient,Springer,Singapore,Singapore,2017,pp.107-126.
    [33]J.H.Cho,D.E.Boyce,P.R.Dawson,Model.Simul.Mater.Sci.15(2007)469-486.
    [34]P.A.Colegrove,H.R.Shercliff,Modelling the friction stir welding of aerospace alloys,in:P.L.Threadgill(Ed.),Proceedings of the 5th International Friction Stir Welding Symposium(2004),PP1-21.
    [35]D.Forrest,J.Nguyen,M.Posada,J.DeLoach,D.Boyce,J.H.Cho,P.R.Dawson,Simulation of HSLA-45 friction stir welding,in:S.A.David(Ed.),Trends in Welding Research:Proceedings of the 7th International Conference(2005)279-286.
    [36]A.Bastier,M.H.Maitournam,K.V.Dang,F.Roger,Sci.Technol.Weld.Join.11(2006)278-288.
    [37]X.X.Zhang,B.L.Xiao,Z.Y.Ma,Metall.Mater.Trans.A 42A(2011)3218-3228.
    [38]S.Perivilli,J.Peddieson,J.Cui,J.Manuf.Sci.Eng.131(2009),011007.
    [39]J.H.Kim,F.Barlat,C.Kim,K.Chung,Met.Mater.Int.15(2009)125.
    [40]C.Cox,D.Lammlein,A.Strauss,G.Cook,Mater.Manuf.Process.25(2010)1278-1282.
    [41]H.Atharifar,D.Lin,R.Kovacevic,J.Mater.Eng.Perform.18(2009)339-350.
    [42]M.Al-moussawi,A.Smith,M.Faraji,Metall.Micros.Anal.6(2017)489-501.
    [43]S.Guerdoux,L.Fourment,M.Miles,T.Nelson,Eulerian Simulation of Friction Stir Welding in 7075 Aluminum,Proceedings of the Annual TMS Conference(2007)83-88.
    [44]S.S.Ltd,JMatPro,Surrey Technology Centre,40 Occam Road GU2 7YG,United Kingdom,2015.
    [45]E.Pichelin,T.Coupez,Comput.Methods Appl.Mech.Eng.163(1998)359-371.
    [46]S.Venugopal,P.V.Sivaprasad,J.Mater.Eng.Perform.12(2003)674-686.
    [47]S.Venugopal,S.L.Mannan,Y.V.R.K.Prasad,Mater.Sci.Eng.A 177(1994)143-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700