用户名: 密码: 验证码:
金属增材制造零件变形研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review on the Thermal Distortion in Metal Additive Manufacturing
  • 作者:谢瑞山 ; 陈高强 ; 史清宇
  • 英文作者:XIE Rui-shan;CHEN Gao-qiang;SHI Qing-yu;Department of Mechanical Engineering, Tsinghua University;State Key Laboratory of Tribology, Tsinghua University;
  • 关键词:增材制造 ; 温度场 ; 变形 ; 数值模拟
  • 英文关键词:additive manufacturing;;temperature field;;distortion;;numerical simulation
  • 中文刊名:JMCX
  • 英文刊名:Journal of Netshape Forming Engineering
  • 机构:清华大学机械工程系;清华大学摩擦学国家重点实验室;
  • 出版日期:2019-07-10
  • 出版单位:精密成形工程
  • 年:2019
  • 期:v.11;No.61
  • 基金:国家重点研发计划(2016YFB1100100)
  • 语种:中文;
  • 页:JMCX201904004
  • 页数:6
  • CN:04
  • ISSN:50-1199/TB
  • 分类号:21-26
摘要
金属增材制造(也称为3D打印)被认为是制造业最有前景的技术之一,主要应用在航空航天领域,用于加工传统方法难以制备的大型复杂零件。该技术面临的一个关键瓶颈是零件的变形,这将严重影响零件的尺寸精度,甚至导致零件开裂而无法使用。首先介绍了研究增材零件变形的主要试验方法,明确了激光位移传感器及数字图像相关技术是研究瞬态变形的有效实验手段。然后介绍了变形预测的数值模拟方法,明确了热源模型、热边界条件及材料的力学性能本构是影响变形预测准确性的主要因素。最后总结了当前国内外变形快速计算方法的研究进展及发展动向。
        Metal additive manufacturing(also known as 3 D printing) is thought as one of the most promising technologies in manufacturing at the current state of the art, which has been applied in manufacturing large and complex metal components in aerospace and automotive industries, which cannot be manufactured by conventional methods. However, one of the critical bottlenecks faced by this technology is thermal distortion, which would influence the dimensional precision and even lead to cracking and unavailability of parts. This paper first introduced the main experimental methods for studying thermal distortion behaviors. Laser displacement sensor and digital image correlation method were thought as effective methods for studying transient distortion. Then the numerical simulation method for distortion prediction was introduced. It is clarified that the heat source model, thermal boundary conditions and mechanical properties of the material were the main factors affecting the prediction accuracy. Finally, the research progress and development trend of the high efficient distortion prediction methods were summarized and reviewed.
引文
[1]卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.LU Bing-heng,LI Di-chen.Development of the Additive Manufacturing(3D Printing)Technology[J].Machine Building and Automation,2013,42(4):1-4.
    [2]林鑫,黄卫东.高性能金属构件的激光增材制造[J].中国科学:信息科学,2015,45(9):1111-1126.LIN Xin,HUANG Wei-dong.Laser Additive Manufacturing of High-performance Metal Components[J].Scientia Sinica Informationis,2015,45(9):1111-1126.
    [3]SAMES W J,LIST F A,PANNALA S,et al.The Metallurgy and Processing Science of Metal Additive Manufacturing[J].International Materials Reviews,2016,61(5):315-360.
    [4]王华明.高性能大型金属构件激光增材制造若干材料基础问题[J].航空学报,2014,35(10):2690-2698.WANG Hua-ming.Material’s Fundamental Issues of Laser Additive Manufacturing for High-performance Large Metallic Components[J].Acta Aeronautica et Astronautica Sinca,2014,35(10):2690-2698.
    [5]YANG Q,ZHANG P,CHENG L,et al.Finite Element Modeling and Validation of Thermomechanical Behavior of Ti-6Al-4V in Directed Energy Deposition Additive Manufacturing[J].Additive Manufacturing,2016,12:169-177.
    [6]AFAZOV S,DENMARK W,TORALLES B L,et al.Distortion Prediction and Compensation in Selective Laser Melting[J].Additive Manufacturing,2017,17:15-22.
    [7]DENLINGER E R,HEIGEL J C,MICHALERIS P,et al.Effect of Inter-layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys[J].Journal of Materials Processing Technology,2015,215:123-131.
    [8]HEIGEL J C,MICHALERIS P,PALMER T A.In Situ Monitoring and Characterization of Distortion during Laser Cladding of Inconel 625[J].Journal of Materials Processing Technology,2015,220:135-145.
    [9]LU X,LIN X,CHIUMENTI M,et al.In Situ Measurements and Thermo-mechanical Simulation of Ti-6Al-4VLaser Solid Forming Processes[J].International Journal of Mechanical Sciences,2019,153/154:119-130.
    [10]LU X,LIN X,CHIUMENTI M,et al.Finite Element Analysis and Experimental Validation of the Thermomechanical Behavior in Laser Solid Forming of Ti-6Al-4V[J].Additive Manufacturing,2018,21:30-40.
    [11]STRYCKER M D,LAVA P,PAEPEGEM W V,et al.Measuring Welding Deformations with the Digital Image Correlation Technique[J].Welding Journal,2011,90(6):107-112.
    [12]OCELíK V,BOSGRA J,HOSSON J D.In-situ Strain Observation in High Power Laser Cladding[J].Surface and Coatings Technology,2009,203(20/21):3189-3196.
    [13]GUO N,YIN X,LIANG J,et al.Weld Bead Distortion of Thin-plate Using Weak Digital Image Correlation Method[J].Journal of Materials Engineering and Performance,2016,25(11):4952-4958.
    [14]CHEN J,YU X,MILLER R G,et al.In Situ Strain and Temperature Measurement and Modelling during Arc Welding[J].Science and Technology of Welding and Joining,2014,20(3):181-188.
    [15]BIEGLER M,GRAF B,RETHMEIER M.In-situ Distortions in LMD Additive Manufacturing Walls Can be Measured with Digital Image Correlation and Predicted Using Numerical Simulations[J].Additive Manufacturing,2018,20:101-110.
    [16]XIE R,ZHAO Y,CHEN G,et al.The Full-field Strain Distribution and the Evolution Behavior during Additive Manufacturing Through In-situ Observation[J].Materials&Design,2018,150:49-54.
    [17]XIE R,CHENG G,ZHAO Y,et al.In-situ Observation and Numerical Simulation on the Transient Strain and Distortion Prediction during Additive Manufacturing[J].Journal of Manufacturing Processes,2019,38:494-501.
    [18]HUSSEIN A,HAO L,YAN C,et al.Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-support in Selective Laser Melting[J].Materials&Design,2013,52:638-647.
    [19]NEELA V,DE A.Three-dimensional Heat Transfer Analysis of LENSTM Process Using Finite Element Method[J].The International Journal of Advanced Manufacturing Technology,2009,45(9/10):935-943.
    [20]GOLDAK J,CHAKRAVARTL A,BLBBY M.A New Finite Element Model for Welding Heat Sources[J].Metallurgical Transactions B,1984,15(2):299-305.
    [21]DENLINGER E R,MICHALERIS P.Effect of Stress Relaxation on Distortion in Additive Manufacturing Process Modeling[J].Additive Manufacturing,2016,12:51-59.
    [22]CONTUZZI N,CAMPANELLI S L,LUDOVICO A D.3DFinite Element Analysis in the Selective Laser Melting Process[J].International Journal of Simulation Modelling,2011,10(3):113-121.
    [23]MATSUMOTO M,SHIOMI M,OSAKADA K,et al.Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing[J].International Journal of Machine Tools&Manufacture,2002,42:61-67.
    [24]MA L,BIN H.Temperature and Stress Analysis and Simulation in Fractal Scanning-based Laser Sintering[J].The International Journal of Advanced Manufacturing Technology,2006,34(9/10):898-903.
    [25]MUKHERJEE T,ZHANG W,DEBROY T.An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing[J].Computational Materials Science,2017,126:360-372.
    [26]HEIGEL J C,MICHALERIS P,REUTZEL E W.Thermo-mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V[J].Additive Manufacturing,2015,5:9-19.
    [27]MUKHERJEE T,MANVATKAR V,DE A,et al.Mitigation of Thermal Distortion during Additive Manufacturing[J].Scripta Materialia,2017,127:79-83.
    [28]DENLINGER E R,HEIGEL J C,MICHALERIS P.Residual Stress and Distortion Modeling of Electron Beam Direct Manufacturing Ti-6Al-4V[J].Journal of Engineering Manufacture,2014,229(10):1803-1813.
    [29]CAO J,GHARGHOURI M A,NASH P.Finite-element Analysis and Experimental Validation of Thermal Residual Stress and Distortion in Electron Beam Additive Manufactured Ti-6Al-4V Build Plates[J].Journal of Materials Processing Technology,2016,237:409-419.
    [30]ZHANG Z,SILVANUS J,LI H,et al.Sensitivity Analysis of History Dependent Material Mechanical Models for Numerical Simulation of Welding Process[J].Science and Technology of Welding and Joining,2008,13(5):422-429.
    [31]QIAO D,FENG Z,ZHANG W,et al.Modeling of Weld Residual Plastic Strain and Stress in Dissimilar Metal Butt Weld in Nuclear Reactors[C]//ASME 2013 Pressure Vessels and Piping Conference,2013:V06BTA091-V06BT06A.
    [32]UEDA Y,FUKUDA K.New Measuring Method of Three Dimensional Welding Residual Stresses Based on Newly Proposed Principle of Inherent Strain[J].Naval Architecture and Ocean Engineering,1980,18:146-163.
    [33]LIANG X,CHENG L,CHEN Q,et al.A Modified Method for Estimating Inherent Strains from Detailed Process Simulation for Fast Residual Distortion Prediction of Single-walled Structures Fabricated by Directed Energy Deposition[J].Additive Manufacturing,2018,23:471-486.
    [34]CHENG L,LIANG X,BAI J,et al.On Utilizing Topology Optimization to Design Support Structure to Prevent Residual Stress Induced Build Failure in Laser Powder Bed Metal Additive Manufacturing[J].Additive Manufacturing,2019,27:290-304.
    [35]鄢东洋,史清宇,吴爱萍,等.焊接数值模拟中以温度为控制变量的高效算法[J].焊接学报,2009,30(8):77-80.YAN Dong-yang,SHI Qing-yu,WU Ai-ping,et al.A High Efficiency Welding Simulation Method Based on Welding Temperature[J].Transactions of the China Welding Institution,2009,30(8):77-80.
    [36]孙延军,李德成,张增磊,等.MTFM的建立及在铝合金筒体结构焊接变形预测中的应用[J].金属学报,2011,47:1403-1407.SUN Yan-jun,LI De-cheng,ZHANG Zeng-lei,et al.Establishment of Traveling Temperature Function Method and Its Application on Welding Distortion Prediction of Cylindrical and Conical Aluminum Alloy Structures[J].Acta Metallurgica Sinica,2011,47:1403-1407.
    [37]YAN D,WU A,SILVANUS J,et al.Predicting Residual Distortion of Aluminum Alloy Stiffened Sheet after Friction Stir Welding by Numerical Simulation[J].Materials&Design,2011,32(4):2284-2291.
    [38]XIE R,ZHAO Y,CHEN G,et al.Development of Efficient Distortion Prediction Numerical Method for Laser Additive Manufactured Parts[J].Journal of Laser Applications,2019,31(2):022314.
    [39]DENLINGER E R,IRWIN J,MICHALERIS P.Thermomechanical Modeling of Additive Manufacturing Large Parts[J].Journal of Manufacturing Science and Engineering,2014,136(6):061007.
    [40]王福雨.钛合金复杂零件增材制造工艺的数值模拟[D].北京:中国科学院大学,2015.WANG Fu-yu.The Process’s Numerical Simulation of Titanium Alloy Complex parts Additive Manufacturing[D].Beijing:University of Chinese Academy of Science,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700