用户名: 密码: 验证码:
Review of post-combustion carbon dioxide capture technologies using activated carbon
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of post-combustion carbon dioxide capture technologies using activated carbon
  • 作者:Alivia ; Mukherjee ; Jude ; A.Okolie ; Amira ; Abdelrasoul ; Catherine ; Niu ; Ajay ; K.Dalai
  • 英文作者:Alivia Mukherjee;Jude A.Okolie;Amira Abdelrasoul;Catherine Niu;Ajay K.Dalai;Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, 57 Campus Drive;
  • 英文关键词:Post-combustion;;Greenhouse gas;;Carbon dioxide capture;;Activated carbon;;Adsorption
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, 57 Campus Drive;
  • 出版日期:2019-07-19
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.83
  • 语种:英文;
  • 页:HJKB201909005
  • 页数:18
  • CN:09
  • ISSN:11-2629/X
  • 分类号:48-65
摘要
Carbon dioxide(CO_2) is the largest anthropogenic greenhouse gas(GHG) on the planet contributing to the global warming. Currently, there are three capture technologies of trapping CO_2 from the flue gas and they are pre-combustion, post-combustion and oxy-fuel combustion. Among these, the post-combustion is widely popular as it can be retrofitted for a short to medium term without encountering any significant technology risks or changes.Activated carbon is widely used as a universal separation medium with series of advantages compared to the first generation capture processes based on amine-based scrubbing which are inherently energy intensive. The goal of this review is to elucidate the three CO_2 capture technologies with a focus on the use of activated carbon(AC) as an adsorbent for post-combustion anthropogenic CO_2 flue gas capture prior to emission to atmosphere. Furthermore, this coherent review summarizes the recent ongoing research on the preparation of activated carbon from various sources to provide a profound understanding on the current progress to highlight the challenges of the CO_2 mitigation efforts along with the mathematical modeling of CO_2 capture. AC is widely seen as a universal adsorbent due to its unique properties such as high surface area and porous texture. Other applications of AC in the removal of contaminants from flue gas, heavy metal and organic compounds, as a catalyst and catalyst support and in the electronics and electroplating industry are also discussed in this study.
        Carbon dioxide(CO_2) is the largest anthropogenic greenhouse gas(GHG) on the planet contributing to the global warming. Currently, there are three capture technologies of trapping CO_2 from the flue gas and they are pre-combustion, post-combustion and oxy-fuel combustion. Among these, the post-combustion is widely popular as it can be retrofitted for a short to medium term without encountering any significant technology risks or changes.Activated carbon is widely used as a universal separation medium with series of advantages compared to the first generation capture processes based on amine-based scrubbing which are inherently energy intensive. The goal of this review is to elucidate the three CO_2 capture technologies with a focus on the use of activated carbon(AC) as an adsorbent for post-combustion anthropogenic CO_2 flue gas capture prior to emission to atmosphere. Furthermore, this coherent review summarizes the recent ongoing research on the preparation of activated carbon from various sources to provide a profound understanding on the current progress to highlight the challenges of the CO_2 mitigation efforts along with the mathematical modeling of CO_2 capture. AC is widely seen as a universal adsorbent due to its unique properties such as high surface area and porous texture. Other applications of AC in the removal of contaminants from flue gas, heavy metal and organic compounds, as a catalyst and catalyst support and in the electronics and electroplating industry are also discussed in this study.
引文
Aaron,D.,Tsouris,C.,2005.Separation of CO2from flue gas:a review.Sep.Sci.Technol.40,321-348.https://doi.org/10.1081/SS-200042244.
    Akhtar,F.,Liu,Q.,Hedin,N.,Bergstr?m,L.,2012.Strong and binder free structured zeolite sorbents with very high CO2-over-N2selectivities and high capacities to adsorb CO2rapidly.Energy Environ.Sci.5,7664-7673.https://doi.org/10.1039/c2ee21153j.
    Alabadi,A.,Razzaque,S.,Yang,Y.,Chen,S.,Tan,B.,2015.Highly porous activated carbon materials from carbonized biomass with high CO2capturing capacity.Chem.Eng.J.281,606-612.https://doi.org/10.1016/j.cej.2015.06.032.
    Arenillas,A.,Smith,K.M.,Drage,T.C.,Snape,C.E.,2005.CO2capture using some fly ash-derived carbon materials.Fuel 84,2204-2210.https://doi.org/10.1016/j.fuel.2005.04.003.
    Azargohar,R.,Dalai,A.K.,2005.Production of activated carbon from Luscar char:experimental and modeling studies.Microporous Mesoporous Mater.85,219-225.https://doi.org/10.1016/j.micromeso.2005.06.018.
    Bae,J.S.,Su,S.,2013.Macadamia nut shell-derived carbon composites for post combustion CO2capture.Int.J.Greenh.Gas Control 19,174-182.https://doi.org/10.1016/j.ijggc.2013.08.013.
    Ben-Mansour,R.,Habib,M.A.,Bamidele,O.E.,Basha,M.,Qasem,N.A.A.,Peedikakkal,A.,Laoui,T.,Ali,M.,2016.Carbon capture by physical adsorption:materials,experimental investigations and numerical modeling and simulations-a review.Appl.Energy 161,225-255.https://doi.org/10.1016/j.apenergy.2015.10.011.
    Ben-Mansour,R.,Basha,M.,Qasem,N.A.A.,2017.Multicomponent and multi-dimensional modeling and simulation of adsorption-based carbon dioxide separation.Comput.Chem.Eng.99,255-270.https://doi.org/10.1016/j.compchemeng.2017.01.040.
    Bonaventura,D.,Chacartegui,R.,Valverde,J.M.,Becerra,J.A.,Verda,V.,2017.Carbon capture and utilization for sodium bicarbonate production assisted by solar thermal power.Energy Convers.Manag.149,860-874.https://doi.org/10.1016/j.enconman.2017.03.042.
    Boonpoke,A.,Chiarakorn,S.,Laosiripojana,N.,Towprayoon,S.,Chidthaisong,A.,2012.Investigation of CO2adsorption by bagasse-based activated carbon.Korean J.Chem.Eng.29,89-94.https://doi.org/10.1007/s11814-011-0143-0.
    Boonpoke,A.,Chiarakorn,S.,Laosiripojana,N.,Towprayoon,S.,Chidthaisong,A.,2013.Synthesis of activated carbon and MCM-41 from bagasse and rice husk and their carbon dioxide adsorption capacity.J.Sustain.Environ.2,77-81.
    Buhre,B.J.P.,Elliott,L.K.,Sheng,C.D.,Gupta,R.P.,Wall,T.F.,2005.Oxy-fuel combustion technology for coal-fired power generation.Prog.Energy Combust.Sci.31,283-307.https://doi.org/10.1016/j.pecs.2005.07.001.
    Chapel,D.G.,Mariz,C.L.,Ernest,J.,1999.Recovery of CO2from flue gases:commercial trends.Can.Soc.Chem.Eng.Annu.Meet.17.https://doi.org/10.1016/j.apenergy.2013.03.089.
    Chattopadhyaya,G.,Macdonald,D.G.,Bakhshi,N.N.,Soltan Mohammadzadeh,J.S.,Dalai,A.K.,2006.Preparation and characterization of chars and activated carbons from Saskatchewan lignite.Fuel Process.Technol.87,997-1006.https://doi.org/10.1016/j.fuproc.2006.07.004.
    Chen,Z.,Deng,S.,Wei,H.,Wang,B.,Huang,J.,Yu,G.,2013.Activated carbons and amine-modified materials for carbon dioxide capture-a review.Front.Environ.Sci.Eng.7,326-340.https://doi.org/10.1007/s11783-013-0510-7.
    Chingombe,P.,Saha,B.,Wakeman,R.J.,2005.Surface modification and characterisation of a coal-based activated carbon.Carbon N.Y.43,3132-3143.https://doi.org/10.1016/j.carbon.2005.06.021.
    Dalai,A.K.,Azargohar,R.,2007.Production of activated carbon from biochar using chemical and physical activation:mechanism and modeling.Mater.Chem.Energy For.Biomass 954,463-476.https://doi.org/10.1021/bk-2007-0954.ch029.
    Dalai,A.K.,Zaman,J.,Hall,E.S.,Tollefson,E.L.,1996.Preparation of activated carbon from Canadian coals using a fixed-bed reactor and a spouted bed-kiln system.Fuel 75,227-237.https://doi.org/10.1016/0016-2361(95)00228-6.
    D'Alessandro,D.M.,Smit,B.,Long,J.R.,2010.Carbon dioxide capture:prospects for new materials.Angew.Chemie-Int.Ed.49,6058-6082.https://doi.org/10.1002/anie.201000431.
    Dantas,T.L.P.,Luna,F.M.T.,Silva,I.J.,de Azevedo,D.C.S.,Grande,C.A.,Rodrigues,A.E.,Moreira,R.F.P.M.,2011.Carbon dioxide-nitrogen separation through adsorption on activated carbon in a fixed bed.Chem.Eng.J.169,11-19.https://doi.org/10.1016/j.cej.2010.08.026.
    De,M.,Azargohar,R.,Dalai,A.K.,Shewchuk,S.R.,2013 Jan 1.Mercury removal by bio-char based modified activated carbons.Fuel 103,570-578.https://doi.org/10.1016/j.fuel.2012.08.011.
    Dean,C.C.,Blamey,J.,Florin,N.H.,Fennell,P.S.,2010.The calcium looping cycle for CO2capture from power generation,cement manufacture and hydrogen production.Chem.Eng.Res.Design 9,836-855.https://doi.org/10.1016/j.cherd.2010.10.013.
    Delgado,J.A.,Uguina,M.A.,Sotelo,J.L.,Ruíz,B.,Rosário,M.,2007.Carbon dioxide/methane separation by adsorption on sepiolite.J.Nat.Gas Chem.16,235-243.https://doi.org/10.1016/S1003-9953(07)60054-1.
    Dodevski,V.,Jankovi?,B.,Stojmenovi?,M.,Krsti?,S.,Popovi?,J.,Pagnacco,M.C.,Popovi?,M.,Pa?ali?,S.,2017.Plane tree seed biomass used for preparation of activated carbons(AC)derived from pyrolysis.Modeling the activation process.Colloids Surf.A Physicochem.Eng.Asp.522,83-96.https://doi.org/10.1016/j.colsurfa.2017.03.003.
    Ello,A.S.,De Souza,L.K.C.,Trokourey,A.,Jaroniec,M.,2013.Development of microporous carbons for CO2capture by KOHactivation of African palm shells.J.CO2Util.2,35-38.https://doi.org/10.1016/j.jcou.2013.07.003.
    Environ,E.,Sevilla,M.,Fuertes,A.B.,2011a.Sustainable porous carbons with a superior performance for CO2capture.Energy Environ.Sci.1,1765-1771.https://doi.org/10.1039/c0ee00784f.
    Gassensmith,J.J.,Furukawa,H.,Smaldone,R.A.,Forgan,R.S.,Botros,Y.Y.,Yaghi,O.M.,Stoddart,J.F.,2011.Strong and reversible binding of carbon dioxide in a green metal-organic framework.J.Am.Chem.Soc.133,15312-15315.https://doi.org/10.1021/ja206525x.
    Ghaedi,M.,Mazaheri,H.,Khodadoust,S.,Hajati,S.,Purkait,M.K.,2015.Application of central composite design for simultaneous removal of methylene blue and Pb2+ions by walnut wood activated carbon.Spectrochim.Acta-Part A Mol.Biomol.Spectrosc.135,479-490.https://doi.org/10.1016/j.saa.2014.06.138.
    Goel,C.,Bhunia,H.,Bajpai,P.K.,2016.Novel nitrogen enriched porous carbon adsorbents for CO2capture:breakthrough adsorption study.J.Environ.Chem.Eng.4,346-356.https://doi.org/10.1016/j.jece.2015.11.017.
    González,A.S.,Plaza,M.G.,Rubiera,F.,Pevida,C.,2013.Sustainable biomass-based carbon adsorbents for post-combustion CO2capture.Chem.Eng.J.230,456-465.https://doi.org/10.1016/j.cej.2013.06.118.
    González-García,P.,2018.Activated carbon from lignocellulosics precursors:a review of the synthesis methods,characterization techniques and applications.Renew.Sust.Energ.Rev.82,1393-1414.https://doi.org/10.1016/j.rser.2017.04.117.
    Hao,W.,Bj?rkman,E.,Lilliestr?le,M.,Hedin,N.,2013.Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2.Appl.Energy 112,526-532.https://doi.org/10.1016/j.apenergy.2013.02.028.
    Hedin,N.,Chen,L.,Laaksonen,A.,2010.Sorbents for CO2capture from flue gas-aspects from materials and theoretical chemistry.Nanoscale 2,1819-1841.https://doi.org/10.1039/c0nr00042f.
    Heidari,A.,Younesi,H.,Rashidi,A.,Ghoreyshi,A.A.,2014.Evaluation of CO2adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment.Chem.Eng.J.254,503-513.https://doi.org/10.1016/j.cej.2014.06.004.
    Herawan,S.G.,Hadi,M.S.,Ayob,M.R.,Putra,A.,2013.Characterization of activated carbons from oil-palm shell by CO2activation with no holding carbonization temperature.Sci.World J.2013,624865.https://doi.org/10.1155/2013/624865.
    Herzog,H.,Golomb,D.A.N.,2004.Elsevier Proof.1 pp.1-11.
    Hornbostel,M.D.,Bao,J.,Krishnan,G.,Nagar,A.,Jayaweera,I.,Kobayashi,T.,Sanjurjo,A.,Sweeney,J.,Carruthers,D.,Petruska,M.A.,Dubois,L.,2013.Characteristics of an advanced carbon sorbent for CO2capture.Carbon N.Y.56,77-85.https://doi.org/10.1016/j.carbon.2012.12.082.
    Illing,G.,Hellgardt,K.,Wakeman,R.J.,Jungbauer,A.,2001.Preparation and characterisation of polyaniline based membranes for gas separation.J.Memb.Sci.184,69-78.https://doi.org/10.1016/S0376-7388(00)00606-2.
    Jain,S.,Kumar,P.,Vyas,R.K.,Pandit,P.,Dalai,A.K.,2014.Adsorption optimization of acyclovir on prepared activated carbon.Can.J.Chem.Eng.92,1627-1635.https://doi.org/10.1002/cjce.22026.
    Kang,K.,Azargohar,R.,Dalai,A.K.,Wang,H.,2016.Systematic screening and modification of Ni based catalysts for hydrogen generation from supercritical water gasification of lignin.Chem.Eng.J.283,1019-1032.https://doi.org/10.1016/J.CEJ.2015.08.032.
    Kanniche,M.,Gros-Bonnivard,R.,Jaud,P.,Valle-Marcos,J.,Amann,J.M.,Bouallou,C.,2010.Pre-combustion,postcombustion and oxy-combustion in thermal power plant for CO2capture.Appl.Therm.Eng.30,53-62.https://doi.org/10.1016/j.applthermaleng.2009.05.005.
    Keith,D.W.,2009.Why capture CO?from the atmosphere?Science325(80),1654-1655.https://doi.org/10.2307/40301874.
    Lee,S.Y.,Park,S.J.,2015.A review on solid adsorbents for carbon dioxide capture.J.Ind.Eng.Chem.23,1-11.https://doi.org/10.1016/j.jiec.2014.09.001.
    Leung,D.Y.C.,Caramanna,G.,Maroto-Valer,M.M.,2014.An overview of current status of carbon dioxide capture and storage technologies.Renew.Sust.Energ.Rev.39,426-443.https://doi.org/10.1016/j.rser.2014.07.093.
    Li,K.,Zheng,Z.,Li,Y.,2010.Characterization and lead adsorption properties of activated carbons prepared from cotton stalk by one-step H3PO4activation.J.Hazard.Mater.181,440-447.https://doi.org/10.1016/j.jhazmat.2010.05.030.
    Lin,H.,Freeman,B.D.,2004.Gas solubility,diffusivity and permeability in poly(ethylene oxide).J.Memb.Sci.239,105-117.https://doi.org/10.1016/j.memsci.2003.08.031.
    Linga,P.,Kumar,R.,Englezos,P.,2007.The clathrate hydrate process for post and pre-combustion capture of carbon dioxide.J.Hazard.Mater.149,625-629.https://doi.org/10.1016/j.jhazmat.2007.06.086.
    Liu,Y.,Wang,Z.U.,Zhou,H.-C.,2012.Recent advances in carbon dioxide capture with metal-organic frameworks.Greenh.Gases Sci.Technol.2,239-259.https://doi.org/10.1002/ghg.1296.
    Lu,C.,Bai,H.,Wu,B.,Su,F.,Hwang,J.F.,2008.Comparative study of CO2capture by carbon nanotubes,activated carbons,and zeolites.Energy Fuel 22,3050-3056.https://doi.org/10.1021/ef8000086.
    Lücking,F.,K?ser,H.,Jank,M.,Ritter,A.,1998.Iron powder,graphite and activated carbon as catalysts for the oxidation of4-chlorophenol with hydrogen peroxide in aqueous solution.Water Res.32,2607-2614.https://doi.org/10.1016/S0043-1354(98)00016-5.
    Lv,Y.,Yu,X.,Jia,J.,Tu,S.T.,Yan,J.,Dahlquist,E.,2012.Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption.Appl.Energy 90,167-174.https://doi.org/10.1016/j.apenergy.2010.12.038.
    Manocha,S.M.,2003.Porous carbons.Sadhana 28,335-348.https://doi.org/10.1007/BF02717142.
    McDougall,G.J.,1991.Physical nature and manufacture of activated carbon.J.South African Inst.Min.Metall.91,109-120.
    Merkel,T.C.,Lin,H.,Wei,X.,Baker,R.,2010.Power plant postcombustion carbon dioxide capture:an opportunity for membranes.J.Memb.Sci.359,126-139.https://doi.org/10.1016/j.memsci.2009.10.041.
    Metz,Bert,Ogunlade,Davidson,Heleen,de Coninck,Loos Manuela,M.L.,2005.Carbon dioxide capture and storage.pp.303-306.
    Mittal,G.,Dhand,V.,Yop,K.,Park,S.,Ro,W.,2015.A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites.J.Indus.Eng.Chem.21,11-25.
    Moghadam,R.A.,Yusup,S.,Lam,H.L.,Shoaibi Al,A.,Ahmad,M.M.,2013.Hydrogen production from mixture of biomass and polyethylene waste in fluidized bed catalytic steam cogasification process.Chem.Eng.Trans.35,565-570.https://doi.org/10.3303/CET1335094.
    Mohamadinejad,H.,Knox,J.C.,Smith,J.E.,2000.Experimental and numerical investigation of adsorption/desorption in packed sorption beds under ideal and nonideal flows.Sep.Sci.Technol.35,1-22.https://doi.org/10.1081/SS-100100140.
    Mondal,M.K.,Balsora,H.K.,Varshney,P.,2012.Progress and trends in CO2capture/separation technologies:a review.Energy 46,431-441.https://doi.org/10.1016/j.energy.2012.08.006.
    Nanda,S.,Dalai,A.K.,Berruti,F.,Kozinski,J.A.,2016.Biochar as an exceptional bioresource for energy,agronomy,carbon sequestration,activated carbon and specialty materials.Waste Biomass Valoriz.7,201-235.https://doi.org/10.1007/s12649-015-9459-z.
    Nasri,N.S.,Hamza,U.D.,Ismail,S.N.,Ahmed,M.M.,Mohsin,R.,2014.Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture.J.Clean.Prod.71,148-157.https://doi.org/10.1016/j.jclepro.2013.11.053.
    Ogungbenro,A.E.,Quang,D.V.,Al-Ali,K.,Abu-Zahra,M.R.M.,2017.Activated carbon from date seeds for CO2capture applications.Energy Procedia 114,2313-2321.https://doi.org/10.1016/j.egypro.2017.03.1370.
    Okolie,J.A.,Rana,R.,Nanda,S.,Dalai,A.K.,Kozinski,J.A.,2019.Supercritical water gasification of biomass:a state-of-the-art review of process parameters,reaction mechanisms and catalysis.Sustain.Energy Fuels.https://doi.org/10.1039/C8SE00565F.
    Oschatz,M.,Antonietti,M.,2018.A search for selectivity to enable CO2capture with porous adsorbents.Energy Environ.Sci.11,57-70.https://doi.org/10.1039/c7ee02110k.
    Packer,M.,2009.Algal capture of carbon dioxide;biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy.Energy Policy 37,3428-3437.https://doi.org/10.1016/j.enpol.2008.12.025.
    Pires,J.C.M.,Alvim-Ferraz,M.C.M.,Martins,F.G.,Sim?es,M.,2012.Carbon dioxide capture from flue gases using microalgae:engineering aspects and biorefinery concept.Renew.Sust.Energ.Rev.16,3043-3053.https://doi.org/10.1016/j.rser.2012.02.055.
    Plaza,M.G.,González,A.S.,Pevida,C.,Pis,J.J.,Rubiera,F.,2012.Valorisation of spent coffee grounds as CO2adsorbents for postcombustion capture applications.Appl.Energy 99,272-279.https://doi.org/10.1016/j.apenergy.2012.05.028.
    Plaza,M.G.,González,A.S.,Pis,J.J.,Rubiera,F.,Pevida,C.,2014.Production of microporous biochars by single-step oxidation:effect of activation conditions on CO2capture.Appl.Energy114,551-562.https://doi.org/10.1016/j.apenergy.2013.09.058.
    Przepiórski,J.,Czy?ewski,A.,Pietrzak,R.,Morawski,A.W.,2013.MgO/CaO-loaded activated carbon for carbon dioxide capture:practical aspects of use.Ind.Eng.Chem.Res.52,6669-6677.https://doi.org/10.1021/ie302848r.
    Rambabu,N.,Rao,B.V.S.K.,Surisetty,V.R.,Das,U.,Dalai,A.K.,2015.Production,characterization,and evaluation of activated carbons from de-oiled canola meal for environmental applications.Ind.Crop.Prod.65,572-581.https://doi.org/10.1016/j.indcrop.2014.09.046.
    Rao,M.M.,Chandra Rao,G.P.,Seshaiah,K.,Choudary,N.V.,Wang,M.C.,2007.Activated carbon from Ceiba pentandra hulls,an agricultural waste,as an adsorbent in the removal of lead and zinc from aqueous solutions.Waste Manage.28(5),849-858.https://doi.org/10.1016/j.wasman.2007.01.017.
    Rashidi,N.A.,Yusup,S.,2016.An overview of activated carbons utilization for the post-combustion carbon dioxide capture.J.CO2Util.13,1-16.https://doi.org/10.1016/j.jcou.2015.11.002.
    Rashidi,N.A.,Yusup,S.,Borhan,A.,Loong,L.H.,2014.Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon.Clean Techn.Environ.Policy 16,1353-1361.https://doi.org/10.1007/s10098-014-0788-6.
    Raynal,L.,Bouillon,P.A.,Gomez,A.,Broutin,P.,2011.From MEA to demixing solvents and future steps,a roadmap for lowering the cost of post-combustion carbon capture.Chem.Eng.J.171,742-752.https://doi.org/10.1016/j.cej.2011.01.008.
    Reynolds,S.P.,Ebner,A.D.,Ritter,J.A.,2005.New pressure swing adsorption cycles for carbon dioxide sequestration.Adsorption11,531-536.https://doi.org/10.1007/s10450-005-5980-x.
    Samanta,A.,Zhao,A.,Shimizu,G.K.H.,Sarkar,P.,Gupta,R.,2012.Post-combustion CO2capture using solid sorbents:a review.Ind.Eng.Chem.Res.51,1438-1463.https://doi.org/10.1021/ie200686q.
    Saxena,R.,Singh,V.K.,Kumar,E.A.,2014.Carbon dioxide capture and sequestration by adsorption on activated carbon.Energy Procedia 54,320-329.https://doi.org/10.1016/j.egypro.2014.07.275.
    Sengupta,S.,Amte,V.,Dongara,R.,Das,A.K.,Bhunia,H.,Bajpai,P.K.,2015.Effects of the adsorbent preparation method for CO2capture from flue gas using K2CO3/Al2O3adsorbents.Energy Fuel 29,287-297.https://doi.org/10.1021/ef501792c.
    Serafin,J.,Narkiewicz,U.,Morawski,A.W.,Wróbel,R.J.,Michalkiewicz,B.,2017.Highly microporous activated carbons from biomass for CO2capture and effective micropores at different conditions.J.CO2Util.18,73-79.https://doi.org/10.1016/j.jcou.2017.01.006.
    Sethia,G.,Sayari,A.,2015.Comprehensive study of ultramicroporous nitrogen-doped activated carbon for CO2capture.Carbon N.Y.93,68-80.https://doi.org/10.1016/j.carbon.2015.05.017.
    Shafeeyan,M.S.,Daud,W.M.A.W.,Houshmand,A.,Shamiri,A.,2010.A review on surface modification of activated carbon for carbon dioxide adsorption.J.Anal.Appl.Pyrolysis 89,143-151.https://doi.org/10.1016/j.jaap.2010.07.006.
    Shafeeyan,M.S.,Daud,W.M.A.W.,Houshmand,A.,Arami-Niya,A.,2011.Ammonia modification of activated carbon to enhance carbon dioxide adsorption:effect of pre-oxidation.Appl.Surf.Sci.257,3936-3942.https://doi.org/10.1016/j.apsusc.2010.11.127.
    Shahkarami,S.,Azargohar,R.,Dalai,A.K.,Soltan,J.,2015a.Breakthrough CO2adsorption in bio-based activated carbons.J.Environ.Sci.(China)34,68-76.https://doi.org/10.1016/j.jes.2015.03.008.
    Shahkarami,S.,Dalai,A.K.,Soltan,J.,Hu,Y.,Wang,D.,2015b.Selective CO2capture by activated carbons:evaluation of the effects of precursors and pyrolysis process.Energy Fuels 29,7433-7440.https://doi.org/10.1021/acs.energyfuels.5b00470.
    Shahkarami,S.,Dalai,A.K.,Soltan,J.,2016.Enhanced CO2adsorption using MgO-impregnated activated carbon:impact of preparation techniques.Ind.Eng.Chem.Res.55,5955-5964.https://doi.org/10.1021/acs.iecr.5b04824.
    Siahpoosh,M.,Fatemi,S.,Vatani,A.,2009.Mathematical modeling of single and multi-component adsorption fixed beds to rigorously predict the mass transfer zone and breakthrough curves.Iran.J.Chem.Chem.Eng.28,25-44.
    Siqueira,R.M.,Freitas,G.R.,Peixoto,H.R.,Nascimento,J.F.D.,Musse,A.P.S.,Torres,A.E.B.,Azevedo,D.C.S.,Bastos-Neto,M.,2017.Carbon dioxide capture by pressure swing adsorption.Energy Procedia 114,2182-2192.https://doi.org/10.1016/j.egypro.2017.03.1355.
    Song,C.F.,Kitamura,Y.,Li,S.H.,2012.Evaluation of stirling cooler system for cryogenic CO2capture.Appl.Energy 98,491-501.https://doi.org/10.1016/j.apenergy.2012.04.013.
    Spigarelli,B.P.,Kawatra,S.K.,2013.Opportunities and challenges in carbon dioxide capture.J.CO2Util.1,69-87.https://doi.org/10.1016/j.jcou.2013.03.002.
    Stephens,J.C.,Zwaan,B.Van Der,2005.CO2Capture and Storage(CCS):Exploring the Research,Development,Demonstration,and Deployment Continuum.pp.1-20.
    Stewart,C.,Hessami,M.,2005.A study of methods of carbon dioxide capture and sequestration--the sustainability of a photosynthetic bioreactor approach.Energy Conv.Manage.46,403-420.https://doi.org/10.1016/j.enconman.2004.03.009.
    Titinchi,S.J.J.,Piet,M.,Abbo,H.S.,Bolland,O.,Schwieger,W.,2014.Chemically modified solid adsorbents for CO2capture.Energy Procedia 63,8153-8160.https://doi.org/10.1016/j.egypro.2015.12.337.
    Tiwari,D.,Goel,C.,Bhunia,H.,Bajpai,P.K.,2017.Dynamic CO2capture by carbon adsorbents:kinetics,isotherm and thermodynamic studies.Sep.Purif.Technol.181,107-122.https://doi.org/10.1016/j.seppur.2017.03.014.
    United States Environmental Agency,2018.Global Greenhouse Gas Emissions Data|Greenhouse Gas(GHG)Emissions|US EPA[WWW Document].URL.https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data accessed 8.22.18.
    Wang,Q.,Luo,J.,Zhong,Z.,Borgna,A.,2011.CO2 capture by solid adsorbents and their applications:current status and new trends.Energy Environ.Sci.4(1),42-55.
    Wu,D.,Xu,Q.,Liu,D.,Zhong,C.,2010.Exceptional CO2capture capability and molecular-level segregation in a Li-modified metal-organic framework.J.Phys.Chem.C 114,16611-16617.
    Xing,B.,Chen,H.,Zhang,X.,2018.Efficient degradation of organic phosphorus in glyphosate wastewater by catalytic wet oxidation using modified activated carbon as a catalyst.Environ.Technol.(United Kingdom)39,749-758.https://doi.org/10.1080/09593330.2017.1310935.
    Xiong,Z.,Shihong,Z.,Haiping,Y.,Tao,S.,Yingquan,C.,Hanping,C.,2013.Influence of NH3/CO2modification on the characteristic of biochar and the CO2capture.Bioenergy Res.6,1147-1153.https://doi.org/10.1007/s12155-013-9304-9.
    Xu,Xiaodong,Matsumura,Yukihiko,Stenberg,Jonny,Michael Jerry Antal,J.,1996.Carbon-catalyzed gasification of organic feedstocks in supercritical water?.Ind.Eng.Chem.Res.35,2522-2530.https://doi.org/10.1021/IE950672B.
    Yadavalli,G.,Lei,H.,Wei,Y.,Zhu,L.,Zhang,X.,Liu,Y.,Yan,D.,2017.Carbon dioxide capture using ammonium sulfate surface modified activated biomass carbon.Biomass Bioenergy 98,53-60.https://doi.org/10.1016/j.biombioe.2017.01.015.
    Yang,H.,Xu,Z.,Fan,M.,Gupta,R.,Slimane,R.B.,Bland,A.E.,Wright,I.,2008.Progress in carbon dioxide separation and capture:a review.J.Environ.Sci.20,14-27.https://doi.org/10.1016/S1001-0742(08)60002-9.
    Yaumi,A.L.,Bakar,M.Z.A.,Hameed,B.H.,2017.Recent advances in functionalized composite solid materials for carbon dioxide capture.Energy 124,461-480.https://doi.org/10.1016/j.energy.2017.02.053.
    Yi,H.,Zuo,Y.,Liu,H.,Tang,X.,Zhao,S.,Wang,Z.,Gao,F.,Zhang,B.,2014.Simultaneous removal of SO2,NO,and CO2on metalmodified coconut shell activated carbon.Water Air Soil Pollut.225,1965.https://doi.org/10.1007/s11270-014-1965-2.
    Yin,C.Y.,Aroua,M.K.,Daud,W.M.A.W.,2007.Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions.Sep.Purif.Technol.52,403-415.https://doi.org/10.1016/j.seppur.2006.06.009.
    Zanco,S.E.,Joss,L.,Hefti,M.,Gazzani,M.,Mazzotti,M.,2017.Addressing the criticalities for the deployment of adsorptionbased CO2capture processes.Energy Procedia 114,2497-2505.https://doi.org/10.1016/j.egypro.2017.03.1407.
    Zhang,X.,He,X.,Gundersen,T.,2013.Post-combustion carbon capture with a gas separation membrane:parametric study,capture cost,and exergy analysis.Energy and Fuels 27,4137-4149.https://doi.org/10.1021/ef3021798.
    Zhu,X.,Wang,P.,Peng,C.,Yang,J.,Yan,X.,2014.Activated carbon produced from paulownia sawdust for high-performance CO2sorbents.Chin.Chem.Lett.25,929-932.https://doi.org/10.1016/j.cclet.2014.03.039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700