用户名: 密码: 验证码:
2个玉米光敏色素C基因的转录丰度对多种光质处理的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transcription Abundances of Two Phytochrome C in Response to Different Light Treatments in Zea mays
  • 作者:牛骧 ; 郭林 ; 杨宗举 ; 孙蕾 ; 李红丹 ; 游光霞 ; 徐宏 ; 孟凡华 ; 佘跃辉 ; 杨建平
  • 英文作者:NIU Xiang;GUO Lin;YANG ZongJu;SUN Lei;LI HongDan;YOU GuangXia;XU Hong;MENG FanHua;SHE YueHui;YANG JianPing;College of Agronomy, Sichuan Agricultural University;Institute of Crop Science, Chinese Academy of Agricultural Sciences;Graduate School, Chinese Academy of Agricultural Sciences;Huangchuan Institute of Agricultural Sciences of Henan Province;
  • 关键词:玉米 ; Zm ; PHYC ; 光信号转导 ; 表达模式 ; 光质处理
  • 英文关键词:Zea mays;;Zm PHYC;;light signal transduction;;expression pattern;;light treatment
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:四川农业大学农学院;中国农业科学院作物科学研究所;中国农业科学院研究生院;河南省潢川县农业科学研究所;
  • 出版日期:2017-06-28 18:22
  • 出版单位:中国农业科学
  • 年:2017
  • 期:v.50
  • 基金:国家转基因生物新品种培育科技重大专项(2016ZX08010002-003-002);; 国家重点研究发展计划(2016YFD0101002);; 北京市自然科学基金(重点)(6151002);; 中国农业科学院科技创新工程
  • 语种:中文;
  • 页:ZNYK201712002
  • 页数:11
  • CN:12
  • ISSN:11-1328/S
  • 分类号:17-27
摘要
【目的】通过NCBI数据库获得2个玉米PHYC及相关数据,并进行相关生物信息学分析。利用实时荧光定量PCR(q RT-PCR)分析2个玉米PHYC在玉米各器官的转录丰度,以及其转录丰度对多种光质处理、黑暗到各种光质转换和光周期处理(长日照和短日照)的响应,为研究玉米PHYC在玉米幼苗去黄化与开花期的调控机制奠定基础。【方法】采用玉米B73自交系为研究材料,通过RT-PCR分别对Zm PHYC1和Zm PHYC2的全长ORF序列进行克隆;借助相关软件对其进行生物信息学分析,利用q RT-PCR分析这两个基因在玉米各器官中的转录丰度,及其转录丰度对各种光照处理的响应。【结果】Zm PHYC1和Zm PHYC2的全长ORF均为3 408 bp,编码1 135个氨基酸基序,分子量分别为126.14和126.07 k D。生物信息学分析表明,玉米phy C蛋白可以分为6个功能区段:节奏周期蛋白—Ah核转运接受蛋白—专一蛋白区段(Per-Arnt-Sim,PAS)、c GMP受激磷酸二酯酶区段(GAF)、色素区段(PHY)和PAS相关区段(PRD,包含2个PAS区段)、组氨酸激酶A区段和组氨酸激酶ATP酶区段,但是Zmphy C2在PRD区段仅有一个PAS区段。氨基酸水平的系统发育树分析表明,Zmphy C1和Zmphy C2与禾本科物种phy C有很高的一致性,且与甘蔗和高粱phy C的亲缘关系较近。q RT-PCR分析表明,Zm PHYC1和Zm PHYC2的表达在根和叶中的转录丰度均较高,同时对持续蓝光和白光响应强烈;在黑暗到各种光质转换处理中,这两个PHYC的表达模式相似。在黑暗转到远红光、红光、蓝光和白光的0.5 h,Zm PHYC1和Zm PHYC2的转录表达均急剧上升,随后迅速下降到自身起始黑暗时的水平以下,并上下波动。这两个基因对长日照和短日照的光周期处理也能积极响应,在长日照条件下,2个Zm PHYC出现了极其相似的表达模式,均在光照和黑暗阶段各出现1个峰值;在短日照条件下,这两个基因的表达模式差异较大,Zm PHYC1的峰值出现在进入黑暗后6 h,而Zm PHYC2的峰值出现在进入光照阶段2 h。【结论】玉米phy C蛋白可以分成6个功能区段,但是Zmphy C2在PRD区段仅具有一个PAS相关区段。2个玉米PHYC转录丰度具有组织特异性。在各种光质处理中,Zm PHYC1和Zm PHYC2的表达模式相近,可能二者存在功能冗余,在转录水平上前者的丰度高于后者,推测Zm PHYC1在玉米中起更重要的作用,并且可能二者在功能上存在分工。Zm PHYC1和Zm PHYC2对各种光质和光周期处理均有较强的响应,推测二者在调控玉米光形态建成和开花中具有重要作用。
        【Objective】To study the functions of phytochrome C genes in seedling de-etiolation and flowering regulation in maize(Zea mays L.), two phytochrome C genes of maize(Zm PHYC1 and Zm PHYC2) were selected from the NCBI database and analyzed by bioinformatic methods. The transcription abundances of two Zm PHYC genes was analyzed in different tissues and in response to light qualities, transitions from the dark to different light conditions, photoperiod treatment(long day and short day) by quantitative RT-PCR(q RT-PCR).【Method】B73 inbred line was used in this study, the full length ORFs of two Zm PHYC genes were cloned by RT-PCR. The proper clones were sequenced and analyzed by bioinformatics software. The transcription abundances of two Zm PHYC genes in different tissues and in response to light treatments was detected using q RT-PCR.【Result】Both the full length ORFs of Zm PHYC1 and Zm PHYC2 contained 3408 nucleotides and encoded two polypeptides with 1135 amino acid motifs, and their molecular weight was 126.14 k D and 126.07 k D, respectively. Two Zmphy C proteins were able to be further divided into six domains: Per(period circadian protein)-Arnt(Ah receptor nuclear translocator protein)-Sim(single-minded protein)(PAS), c GMP-stimulated phosphodiesterase(GAF), phytochrome(PHY), PAS-related domain(PRD) containing two PAS, His Kinase A domain(His KA), Histidine kinase-like ATPases(HATPase_c), while Zmphy C2 lacked a PAS in PRD domain. Phylogenetic analysis indicated that the two Zmphy C proteins belonged to the same branch with phy C proteins from other graminaceous species, especially with the phy C proteins from sugarcane and sorghum. q RT-PCR assays showed that both Zm PHYC1 and Zm PHYC2 belonged to tissue-specific genes and highly expressed in roots and leaves. The transcription abundances of the both genes were very high under blue and white light conditions. Both Zm PHYC1 and Zm PHYC2 displayed similar expression patterns during transitions from the dark to different light conditions. The transcription abundances of the both genes went dramatically up at 0.5 h after transitions from the dark to far-red, red, blue, or white light. And then they quickly dropped and waved below their own levels in the dark. Both Zm PHYC1 and Zm PHYC2 were also able to respond to long-day or short-day treatments. During long-day treatment, they likely had one peak in either light or dark period. During short-day treatment, they showed different expression patterns, the peak of Zm PHYC1 happened at 6 h after conversion to dark period, while Zm PHYC2 occurred at 2 h after conversion to light period.【Conclusion】 Zmphy C1 protein kept six domains, while Zmphy C2 lacks a PAS in PRD domain. The transcription abundances of the both PHYC genes were tissue-specific in maize. Similar expression patterns of Zm PHYC1 and Zm PHYC2 genes in response to different light treatments suggest that they both might keep redundant functions. Since the transcription abundances of Zmphy C1 were higher than these of Zmphy C2, Zmphy C1 might have more important role in seedling responding to light than Zmphy C2, which may be due to the existence of different functions in maize. Both Zm PHYC1 and Zm PHYC2 respond to light and photoperiod treatments, suggesting that they are involved in seedling de-etiolation and flowering time control in maize. Thus their roles in crop improvement are worthy of more exploration in the future.
引文
[1]éVA K,FERENC N.Phytochrome controlled signalling cascades in higher plants.Physiologia Plantarum,2003,117(3):305-313.
    [2]WANG H,DENG X W.Dissecting the phytochrome A-dependent signaling network in higher plants.Trends in Plant Science,2003,8(4):172-178.
    [3]GAO Y,JIANG W,DAI Y,XIAO N,ZHANG C Q,LI H,LU Y,WU M Q,TAO X Y,DENG D X,CHEN J M.A maize phytochromeinteracting factor 3 improves drought and salt stress tolerance in rice.Plant Molecular Biology,2015,87(4/5):413-428.
    [4]SHIN J,ANWER M U,DAVIS S J.Phytochrome-Interacting Factors(PIFs)as bridges between environmental signals and the circadian clock:Diurnal regulation of growth and development.Molecular Plant,2013,6(3):283-300.
    [5]KOLMOS E,HERRERO E,BUJDOSO N,MILLAR A J,TOTH R,GYULA P,NAGY F,DAVIS S J.A reduced-function allele reveals that EARLY FLOWERING3 repressive action on the circadian clock is modulated by phytochrome signals in Arabidopsis.The Plant Cell,2011,23(9):3230-3246.
    [6]王莉,胡胜德.玉米用途之争:粮食消费还是能源消费.农业经济,2008(11):8-9.WANG L,HU S D.Corn use of the dispute:Food consumption or energy consumption.Agricultural Economy,2008(11):8-9.(in Chinese)
    [7]詹克慧,李志勇,侯佩,习雨琳,肖阳,孟凡华,杨建平.利用修饰光敏色素信号途径进行作物改良的可行性.中国农业科学,2012,45(16):3249-3255.ZHAN K H,LI Z Y,HOU P,XI Y L,XIAO Y,MENG F H,YANG J P.A new strategy for crop improvement through modification of phytochrome signaling pathways.Scientia Agricultura Sinica,2012,45(16):3249-3255.(in Chinese)
    [8]MONTE E,ALONSO J M,ECKER J R,ZHANG Y L,LI X,YOUNG J,PHILLIPS S A,QUAIL P H.Isolation and characterization of phy C mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways.The Plant Cell,2003,15(9):1962-1980.
    [9]FANKHAUSER C,CASAL J J.Phenotypic characterization of a photomorphogenic mutant.The Plant Journal,2004,39(5):747-760.
    [10]BATSCHAUER A.Photoreceptors of higher plants.Planta,1998,206(4):479-492.
    [11]LI J G,LI G,WANG H Y,DENG X W.Phytochrome signaling mechanisms.The Arabidopsis Book,2011,9:e0148.
    [12]BAE G,CHOI G.Decoding of light signals by plant phytochromes and their interacting proteins.Annual Review of Plant Biology,2008,59:281-311.
    [13]SAKAMOTO K,NAGATANI A.Nuclear localization activity of phytochrome B.The Plant Journal,1996,10(5):859-868.
    [14]廖祥儒,史海水,尚丹,韩国辉.植物中的光敏色素.生物技术通讯,2004,15(1):95-97.LIAO X R,SHI H S,SHANG D,HAN G H.Photochromes in plants.Letters in Biotechnology,2004,15(1):95-97.(in Chinese)
    [15]REED J W,NAGATANI A,ELICH T D,FAGAN M,CHORY J.Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development.Plant Physiology,1994,104(4):1139-1149.
    [16]SHARROCK R A,CLACK T.Heterodimerization of type II phytochromes in Arabidopsis.Proceedings of the National Academy of Sciences of the USA,2004,101(31):11500-11505.
    [17]SHARROCK R A,CLACK T.Patterns of expression and normalized levels of the five Arabidopsis phytochromes.Plant Physiology,2002,130(1):442-456.
    [18]CLACK T,MATHEWS S,SHARROCK R A.The phytochrome apoprotein family in Arabidopsis,is encoded by five genes:The sequences and expression of PHYD,and PHYE.Plant Molecular Biology,1994,25(3):413-427.
    [19]QUAIL P H,BOYLAN M T,PARKS B M,SHORT T W,XU Y,WAGNER D.Phytochromes:Photosensory perception and signal transduction.Science,1995,268(5211):675-680.
    [20]FRANKLIN K A,DAVIS S J,STODDART W M,VIERSTRA R D,WHITELAM G C.Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis.The Plant Cell,2003,15(9):1981-1989.
    [21]TAKANO M,INAGAKI N,XIE X Z,YUZURIHARA N,HIHARA F,ISHIZUKA T,YANO M,NISHIMURA M,MIYAO A,HIROCHIKA H,SHINOMURA T.Distinct and cooperative functions of phytochromes A,B,and C in the control of deetiolation and flowering in rice.The Plant Cell,2005,17(12):3311-3325.
    [22]ROBSON P R H,SMITH H.Fundamental and biotechnological applications of phytochrome transgenes.Plant Cell&Environment,1997,20(6):831-839.
    [23]FRANKLIN K A,WHITELAM G C.Light signals,phytochromes and cross-talk with other environmental cues.Journal of Experimental Botany,2004,55(395):271-276.
    [24]QIN M M,KUHN R,MORAN S,QUAIL P H.Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion.The Plant Journal,1997,12(5):1163-1172.
    [25]HALLIDAY K J,THOMAS B,WHITELAM G C.Expression of heterologous phytochromes A,B or C in transgenic tobacco plants alters vegetative development and flowering time.The Plant Journal,1997,12(5):1079-1090.
    [26]SAWERS R J H,LINLEY P J,FARMER P R,HANLEY N P,COSTICH D E,TERRY M J,BRUTNELL T P.Elongated mesocotyl1,a phytochrome-deficient mutant of maize.Plant Physiology,2002,130(1):155-163.
    [27]IZAWA T,OIKAWA T,TOKUTOMI S,OKUNO K,SHIMAMOTO K.Phytochromes confer the photoperiodic control of flowering in rice(a short-day plant).The Plant Journal,2000,22(5):391-399.
    [28]TAKANO M,HIROCHIKA H,MIYAO A.Control of plant flowering time by regulation of phytochrome c expression:US 7566815 B2[P].2009.
    [29]CHEN A,LI C X,HU W,LAU M Y,LIN H Q,ROCKWELL N C,MARTIN S S,JERNSTEDT J A,CLARK L J,DUBCOVSKY J.Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod.Proceedings of the National Academy of Sciences of the USA,2014,111(28):10037-10044.
    [30]SA?DOU A A,CLOTAULT J,COUDERC M,MARIAC C,DEVOS K M,THUILLET A C,AMOUKOU I A,VIGOUROUX Y.Association mapping,patterns of linkage disequilibrium and selection in the vicinity of the PHYTOCHROME C gene in pearl millet.Theoretical and Applied Genetics,2014,127(1):19-32.
    [31]SA?DOU A A,MARIAC C,LUONG V,PHAM J L,BEZANCON G,VIGOUROUX Y.Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet.Genetics,2009,182(182):899-910.
    [32]NISHIDA H,ISHIHARA D,ISHII M,KANEKO T,KAWAHIGASHI H,AKASHI Y,SAISHO D,TANAKA K,HANDA H,TAKEDA K,KATO K.Phytochrome C is a key factor controlling long-day flowering in barley.Plant Physiology,2013,163(2):804-814.
    [33]RAJEEVAN M S,RANAMUKHAARACHCHI D G,VERNON S D,UNGER E R.Use of real-time quantitative PCR to validate the results of c DNA array and differential display PCR technologies.Methods,2001,25(4):443-451.
    [34]GAUT B S,DOEBLEY J F.DNA sequence evidence for the segmental allotetraploid origin of maize.Proceedings of the National Academy of Sciences of the USA,1997,94(13):6809-6814.
    [35]WILSON W A,HARRINGTON S E,WOODMAN W L,LEE M,SORRELLS M E,MCCOUCH S R.Inferences on the genome structure of progenitor maize through comparative analysis of rice,maize and the domesticated panicoids.Genetics,1999,153(1):453-473.
    [36]MURAMOTO T,TSURUI N,TERRY M J,YOKOTA A,KOHCHI T.Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis.Plant Physiology,1958,130(4):1958-1966.
    [37]CORNEJO J,WILLOWS R D,BEALE S I.Phytobilin biosynthesis:Cloning and expression of a gene encoding soluble ferredoxindependent heme oxygenase from Synechocystis sp.PCC 6803.The Plant Journal,1998,15(1):99-107.
    [38]WELLER J L,TERRY M J,RAMEAU C,REID J B,KENDRICK R E.The phytochrome-deficient pcd1 mutant of pea is unable to convert heme to biliverdin IXα.The Plant Cell,1996,8(1):55-67.
    [39]梁前进,王鹏程,白燕荣.蛋白质磷酸化修饰研究进展.科技导报,2012,30(31):73-79.LIANG Q J,WANG P C,BAI Y R.Summarization on the progress in protein phosphorylation.Science&Technology Review,2012,30(31):73-79.(in Chinese)
    [40]EDGERTON M D,JONES A M.Localization of protein-protein interactions between subunits of phytochrome.The Plant Cell,1992,4(2):161-171.
    [41]SHEEHAN M J,KENNEDY L M,COSTICH D E,BRUTNELL T P.Subfunctionalization of PHYB1,and PHYB2,in the control of seedling and mature plant traits in maize.Plant Journal for Cell&Molecular Biology,2007,49(2):338-353.
    [42]KISS J Z,MULLEN J L,CORRELL M J,HANGARTER R P.Phytochromes A and B mediate red-light-induced positive phototropism in roots.Plant Physiology,2003,131(3):1411-1417.
    [43]JOHNSON E M,PAO L I,FELDMAN L J.Regulation of phytochrome message abundance in root caps of maize.Plant Physiology,1991,95(S1):544-550.
    [44]CORRELL M J,KISS J Z.The roles of phytochromes in elongation and gravitropism of roots.Plant&Cell Physiology,2005,46(2):317-323.
    [45]CASSON S A,FRANKLIN K A,GRAY J E,GRIERSON C S,WHITELAM G C,HETHERINGTON A M.Phytochrome B and PIF4 regulate stomatal development in response to light quantity.Current Biology,2009,19(3):229-234.
    [46]BOCCALANDRO H E,RUGNONE M L,MORENO J E,PLOSCHUK E L,SERNA L,YANOVSKY M J,CASAL J J.Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis.Plant Physiology,2009,150(2):1083-1092.
    [47]杨宗举,闫蕾,宋梅芳,苏亮,孟凡华,李红丹,白建荣,郭林,杨建平.玉米光敏色素A1与A2在各种光处理下的转录表达特性.作物学报,2016,42(10):1462-1470.YANG Z J,YAN L,SONG M F,SU L,MENG F H,LI H D,BAI J R,GUO L,YANG J P.Transcription characteristics of Zm PHYA1 and Zm PHYA2 under different light treatments in maize.Acta Agronomica Sinica,2016,42(10):1462-1470.(in Chinese)
    [48]MATHEWS S.Phytochrome-mediated development in land plants:Red light sensing evolves to meet the challenges of changing light environments.Molecular Ecology,2006,15(12):3483-3503.
    [49]SUáREZ-LóPEZ P,WHEATLEY K,ROBSON F,ONOUCHI H,VALVERDE F,COUPLAND G.CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis.Nature,2001,410(6832):1116-1120.
    [50]PI?EIRO M,GEORGE C.The control of flowering time and floral identity in Arabidopsis.Plant Physiology,1998,117(1):1-8.
    [51]SAMACH A,ONOUCHI H,GOLD S E,DITTA G S,SCHWARZSOMMER Z,YANOFSKY M F,COUPLAND G.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.Science,2000,288(5471):1613-1616.
    [52]MARKELZ N H,COSTICH D E,BRUTNELL T P.Photomorphogenic responses in maize seedling development.Plant Physiology,2003,133(4):1578-1591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700