用户名: 密码: 验证码:
基于InSAR技术的淮南矿区DEM重建及精度分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:DEM reconstruction and accuracy analysis of Huainan mining area based on InSAR technology
  • 作者:李金超 ; 高飞 ; 陶庭叶 ; 方睿
  • 英文作者:LI Jin-chao;GAO Fei;TAO Ting-ye;FANG Rui;Hefei University of Technology,School of Civil Engineer;
  • 关键词:合成孔径雷达干涉测量 ; 数字高程模型重建 ; ENVISAT ; ASAR影像 ; 三维可视化
  • 英文关键词:Synthetic Aperture Radar Interferometry(InSAR);;DEM reconstruction;;Envisat Advanced Synthetic Aperture Radar(ASAR);;3D visualization
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:合肥工业大学土木与水利工程学院;
  • 出版日期:2018-07-25 19:06
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.154
  • 基金:测绘遥感信息工程国家重点实验室资助项目(16P02)资助
  • 语种:中文;
  • 页:DQWJ201902004
  • 页数:7
  • CN:02
  • ISSN:11-2982/P
  • 分类号:25-31
摘要
对于易发生地表形变的区域,传统DEM模型如SRTM,逐渐失去其时效特性,不能准确的描述地质特征,亟待更新重建.本文基于合成孔径雷达干涉测量(InSAR)采用SAR影像复数据相位信息提取地面三维信息的新技术,介绍了合成孔径雷达干涉测量数字高程模型建立的原理和方法.在此基础上,选取研究区,获取了Envisat ASAR SLC雷达影像数据,采用InSAR算法对研究区的数字高程模型进行了重建.并在研究区的形变区内外分别选取控制点,对重建DEM和SRTM进行比较分析.结果表明:对于易发生形变的特殊区域,传统DEM因失去其时效性,无法准确的描述地形特征;合成孔径雷达干涉测量可以作为此类地区DEM定期重建的有效手段.最后对重建的DEM实现三维可视化,提高了读图效率和成图质量.
        For regions that are prone to surface deformation, traditional DEM models such as SRTM gradually lose their timeliness characteristics, fail to accurately describe geological features, and require urgently updated. In this paper, a new technique based on Synthetic Aperture Radar Interferometry(InSAR) using SAR image phase information to extract 3 D ground information is presented, and the principle and method of establishing the digital elevation model of InSAR are introduced. Then, the Envisat ASAR SLC radar image data was obtained and the digital elevation model of the research area was reconstructed by InSAR algorithm. Based on this, the control points were selected inside and outside the deformation area of the study area, and the reconstruction DEM and SRTM were compared and analyzed. Analysis shows that traditional DEM is unable to accurately describe topographical features due to loss of timeliness in special areas that are prone to deformation, and InSAR is an effective means of periodic reconstruction of DEM in such areas. Finally, the 3 D visualization of the reconstructed DEM is realized, which improves the reading efficiency and image quality.
引文
Batuhan Osmanolu, Timothy H. Dixon, Shimon Wdowinski, et al. 2011. Mexico City subsidence observed with persistent scatterer InSAR[J]. International Journal of Applied Earth Observation and Geoinformation, 13(1): 1-12.
    GUO Yufang, WU Wei, ZHU Jian. 2011. 《Revision of the digital elevation model of digital achievements of basic geographic information 1:50001:100001:250001:500001:100000》.[J]. Standardization of Surveying and mapping (in Chinese), (1): 1-3.
    Hu J, Ding X L, Li Z W, et al. 2016. Vertical and horizontal displacements of Los Angeles from InSAR and GPS time series analysis: resolving tectonic and anthropogenic motions[J]. Journal of Geodynamics, 99: 27-38.
    JI Ling-Yun, LIU Chuan-Jin, XU Jing, et al. 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS 7.0 earthquake in China[J]. Chinese Journal of Geophysics (in Chinese), 60(10): 4069- 4082, doi: 10.6038/cjg20171032.
    LIU Yun-Hua, WANG Chi-Sheng, SHAN Xin-Jian, et al. 2014. Result of SAR differential interferometry for the co-seismic deformation and source parameter of the MS 7.0 Lushan Earthquake[J]. Chinese Journal of Geophysics (in Chinese), 57(8): 2495-2506, doi: 10.6038/cjg20140811.
    LU Qian-yun, ZHENG Qian, SUN Jian-bao, et al. 2015. Coseismic deformation field of 2015 Nepal earthquake (MW 7.8) detected by new generation satellite radar interferometry data[J]. Progress in Geophysics (in Chinese), 30(6): 2505-2510, doi: 10.6038/pg20150609.
    Parker A L. 2017. Investigating Long-Term Subsidence at Medicine Lake Volcano, CA, Using Multi Temporal InSAR[J]. Geophysical Journal International, 199(2):844-859.
    Peltier A, Froger J L, Villeneuve N, et al. 2017. Assessing the reliability and consistency of InSAR and GNSS data for retrieving 3D displacement rapid changes, the example of the 2015 Piton de la Fournaise eruptions[J]. Journal of Volcanology & Geothermal Research, 344:106-120.
    Scott Chelsea Phipps, Lohman Rowena Benfer. 2016. Sensitivity of earthquake source inversions to atmospheric noise and corrections of InSAR data[J]. Journal of Geophysical Research-Solid Earth, 121(5): 4031- 4044.
    Spaans K, Hooper A. 2016. InSAR processing for volcano monitoring and other near-real time applications[J]. Journal of Geophysical Research Solid Earth, 121(4): 2947-2960.
    Sui T, Masterlark T. 2016. Coseismic slip distribution of the 2015 MW 7.8 Gorkha, Nepal, earthquake from joint inversion of GPS and InSAR data for slip within a 3-D heterogeneous Domain[J]. Journal of Geophysical Research Solid Earth, 121(5): 3479-3503.
    Sun S B, Che T. 2013. A Review of the Research on Snow Cover Monitored with Synthetic Aperture Radar (SAR)[J]. Journal of Glaciology & Geocryology, 35(3): 636-647.
    WANG Le-Yang, GAO Hua, FENG Guang-Cai. 2017. InSAR and GPS inversion for source parameters of the 2016 MW 6.4 Meinong, Taiwan earthquake[J]. Chinese Journal of Geophysics (in Chinese), 60(7): 2578-2588, doi: 10.6038/cjg20170707.
    WANG Ping, WU Qing-xing, LIU Shao-feng, et al. 2011. Using D-InSAR and resistivity imaging profile to study ground subsidence above the old goaf of Wangfeng coal mine in Jiaozuo city[J]. Progress in Geophysics (in Chinese), 26(6): 2196-2203, doi: 10.3969/j.issn.1004-2903.2011.06.038.
    WANG Xiu-ping. 2010. Minimum cost flow method for phase unwrapping of InSAR images and its improved algorithm[J]. Science of Surveying and Mapping (in Chinese), 35(4): 129-131.
    ZHANG Guo-hong, QU Chun-yan, SONG Xiao-gang, et al. 2010. Slip distribution and source parameters inverted from co-seismic deformation derived by InSAR technology of Wenchuan MW 7.9 earthquake[J]. Chinese Journal of Geophysics (in Chinese), 53(2): 269-279, doi: 10.3969/j.issn.0001-5733.2010.02.005.
    ZHAO Yi, JIANG Mi, YANG Chuan, et al. 2017. Comparision between filtering methods for InSAR interferogram[J]. Science of Surveying and Mapping (in Chinese), 42(6): 149-154.
    ZHOU Lu, GUO Ji-ming, LI Xin, et al. 2016. Surface Subsidence Monitoring and Analysis in Beijing Based on SBAS-InSAR[J]. Journal of Geodesy and Geodynamics (in Chinese), 36(9): 793-797.
    郭玉芳, 兀伟, 朱健. 2011. 《基础地理信息数字成果1:50001:100001:250001:500001:100000数字高程模型》修订说明[J]. 测绘标准化, (1): 1-3.
    季灵运, 刘传金, 徐晶, 等. 2017. 九寨沟MS 7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报, 60(10): 4069- 4082, doi: 10.6038/cjg20171032.
    刘云华, 汪驰升, 单新建, 等. 2014. 芦山MS 7.0级地震InSAR形变观测及震源参数反演[J]. 地球物理学报, 57(8): 2495-2506, doi: 10.6038/cjg20140811.
    卢倩云, 郑茜, 孙建宝, 等. 2015. 基于新一代雷达卫星InSAR数据检测2015年尼泊尔MW 7.8级地震的同震形变场[J]. 地球物理学进展, 30(6): 2505-2510, doi: 10.6038/pg20150609.
    王乐洋, 高华, 冯光财. 2017. 2016年台湾美浓MW 6.4地震震源参数的InSAR和GPS反演[J]. 地球物理学报, 60(7): 2578-2588, doi: 10.6038/cjg20170707.
    王平, 吴清星, 刘少峰, 等. 2011. 利用D-InSAR测量和高密度电阻率剖面揭示焦作市王封煤矿老采空区地面沉降机制[J]. 地球物理学进展, 26(6): 2196-2203, doi: 10.3969/j.issn.1004-2903.2011.06.038.
    王秀萍. 2010. InSAR图像相位解缠的最小费用流法及其改进算法研究[J]. 测绘科学, 35(4): 129-131.
    张国宏, 屈春燕, 宋小刚, 等. 2010. 基于InSAR 同震形变场反演汶川MW 7.9地震断层滑动分布[J]. 地球物理学报, 53(2): 269-279, doi: 10.3969/j.issn.0001-5733.2010.02.005.
    赵诣, 蒋弥, 杨川, 等. 2017. InSAR干涉图滤波方法对比[J]. 测绘科学, 42(6): 149-154.
    周吕, 郭际明, 李昕, 等. 2016. 基于SBAS-InSAR的北京地区地表沉降监测与分析[J]. 大地测量与地球动力学, 36(9): 793-797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700