用户名: 密码: 验证码:
长链非编码RNA在脊髓损伤中的研究进展
详细信息    查看全文 | 推荐本文 |
摘要
脊髓损伤作为一种常见的神经系统创伤,目前临床治疗效果并不理想。长链非编码RNA在多种生理与病理进程中发挥着重要作用,相关研究表明长链非编码RNA在脊髓损伤中同样发挥着重要作用,并且调控相应长链非编码RNA表达水平可以抑制继发性损伤并促进脊髓损伤后功能恢复,这对于设计新的分子治疗方案具有重要意义。因此,本文旨在综述长链非编码RNA在脊髓损伤中的作用及机制,以提高对脊髓损伤发病机制的认识,并且为脊髓损伤的治疗策略提供新的思路。
        
引文
[1] Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury[J]. Nat Med,2017,23(7):818-28.
    [2] Scholpa N E, Schnellmann R G. Mitochondrial-based therapeutics for the treatment of spinal cord injury: mitochondrial biogenesis as a potential pharmacological target[J]. J Pharmacol Exp Ther,2017,363(3):303-13.
    [3] Liu B, Sun L, Liu Q, et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis[J]. Cancer Cell,2015,27(3):370-81.
    [4] Liu Q, Hu X, Zhang X, et al. The TMSB4 pseudogene LncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis[J].Mol Ther,2016,24(10):1726-33.
    [5] Meller V, Joshi S, Deshpande N. Modulation of chromatin by noncoding RNA[J]. Annu Rev Genet,2015,49,673-95.
    [6] ?rom U, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells[J]. Cell,2010,143(1):46-58.
    [7] G Hendrickson D, Kelley D, Tenen D, et al. Widespread RNA binding by chromatin-associated proteins[J]. Genome Biol,2016,17:28.
    [8] Santos-Pereira J, Aguilera A. R loops: new modulators of genome dynamics and function[J]. Nat Rev Genet,2015,16(10):583-97.
    [9] 丁亚, 刘锦波. 小鼠脊髓损伤中的长链非编码RNA表达谱[J]. 蚌埠医学院学报,2016,41(12):1541-4.
    [10] Zhou H, Shi Z, Kang Y, et al. Investigation of candidate long noncoding RNAs and messenger RNAs in the immediate phase of spinal cord injury based on gene expression profiles[J]. Gene,2018,661:119-25.
    [11] Duran R C, Yan H, Zheng Y, et al. The systematic analysis of coding and long non-coding RNAs in the sub-chronic and chronic stages of spinal cord injury[J]. Sci Rep,2017,7:41008.
    [12] Silver J,Miller J.Regeneration beyond the glial scar[J].Nat Rev Neurosci,2004,5(2):146-56.
    [13] Cregg J, DePaul M, Filous A, et al. Functional regeneration beyond the glial scar[J]. Exp Neurol,2014,253(1):197-207.
    [14] Wang J, Hu B, Cao F, et al. Down regulation of lncSCIR1 after spinal cord contusion injury in rat[J]. Brain Res,2015,1624:314-20.
    [15] Matsuura I, Taniguchi J, Hata K, et al. BMP inhibition enhances axonal growth and functional recovery after spinal cord injury[J]. J Neurochem,2008,105(4):1471-9.
    [16] Suh H, Min J, Choi K, et al. Axonal regeneration effects of Wnt3a-secreting fibroblast transplantation in spinal cord-injured rats[J]. Acta Neurochir (Wien),2011,153(5):1003-10.
    [17] Gu S, Xie R, Liu X, et al. Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury[J]. Int J Mol Sci,2017,18(4):732.
    [18] Zhuang L, Yang Y, Ma X, et al. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST[J]. Cell Death Dis,2016,7(4):e2203.
    [19] Huang Y, Chang C, Lee S, et al. Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression[J]. Oncotarget,2016,7(28):43256-66.
    [20] Zhang P, Zhang L, Zhu L, et al. The change tendency of PI3K/Akt pathway after spinal cord injury[J]. Am J Transl Res,2015,7(11):2223-32.
    [21] Tsai C, Wu J, Fang C, et al. PTEN, a negative regulator of PI3K/Akt signaling, sustains brain stem cardiovascular regulation during mevinphos intoxication[J]. Neuropharmacology,2017,123:175-85.
    [22] Ding Y, Song Z, Liu J. Aberrant LncRNA expression profile in a contusion spinal cord injury mouse model[J]. Biomed Res Int,2016,2016(9):1-10.
    [23] Tsai M, Tsai S, Huang M, et al. Acidic FGF promotes neurite outgrowth of cortical neurons and improves neuroprotective effect in a cerebral ischemic rat model[J]. Neuroscience,2015,305:238-47.
    [24] Lv H. lncRNA-Map2k4 sequesters miR-199a to promote FGF1 expression and spinal cord neuron growth[J]. Biochem Biophys Res Commun,2017,490(3):948-54.
    [25] López-Serrano C, Torres-Espín A, Hernández J, et al. Effects of the post-spinal cord injury microenvironment on the differentiation capacity of human neural stem cells derived from induced pluripotent stem cells[J]. Cell Transplant,2016,25(10):1833-52.
    [26] Zheng J, Yi D, Liu Y, et al. Long nonding RNA UCA1 regulates neural stem cell differentiation by controlling miR-1/Hes1 expression[J]. Am J Transl Res,2017,9(8):3696-3704.
    [27] Li L, Jiang H, Li Y, et al. Hydrogen sulfide protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord ischemia-reperfusion injury[J]. J Biomed Sci,2015,22(1):1-10.
    [28] Liu Y, Pan L, Jiang A, et al. Hydrogen sulfide upregulated lncRNA CasC7 to reduce neuronal cell apoptosis in spinal cord ischemia-reperfusion injury rat[J]. Biomed Pharmacother,2018,98:856-62.
    [29] Zhou X, He X, Ren Y. Function of microglia and macrophages in secondary damage after spinal cord injury[J]. Neural Regen Res,2014,9(20):1787-95.
    [30] Zhou H, Wang L, Wang D, et al. Long non-coding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via modulating miR-199b/IKKβ/NF-κB signaling pathway[J]. Am J Physiol Cell Physiol,2018,315(1):C52-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700