用户名: 密码: 验证码:
Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition
  • 作者:Tingting ; Guan ; Suiyuan ; Chen ; Xueting ; Chen ; Jing ; Liang ; Changsheng ; Liu ; Mei ; Wang
  • 英文作者:Tingting Guan;Suiyuan Chen;Xueting Chen;Jing Liang;Changsheng Liu;Mei Wang;Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education),School of Materials Science and Engineering,Northeastern University;Shenyang Dalu Laser Technology Co.Ltd.;
  • 英文关键词:Direct laser deposition;;Energy area density;;12CrNi2Y alloy steel;;Microstructures;;Mechanical properties
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University;Shenyang Dalu Laser Technology Co. Ltd.;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:financially supported by the National Key R&D Program of China (No. 2016YFB1100201);; the Green Manufacturing System Integration Project of the Industry and Information Ministry of China (2017);; the Research and development plan for the future emerging industries in Shenyang (18-004-2-26)
  • 语种:英文;
  • 页:CLKJ201902017
  • 页数:8
  • CN:02
  • ISSN:21-1315/TG
  • 分类号:169-176
摘要
This work aims to establish the effect of laser energy area density(EAD) as the laser incident energy on density, microstructures and mechanical properties of direct laser deposition(DLD) 12CrNi2 Y alloy steel.The results show that the density of DLD 12CrNi2 Y alloy steel increases at initial stage and then decreases with an increase of EAD, the highest density of alloy steel sample is 98.95%. The microstructures of DLD12CrNi2 Y alloy steel samples are composed of bainite, ferrite and carbide. With increase of EAD, the microstructures transform from polygonal ferrite(PF) to granular bainite(GB). The martensite-austenite constituent(M-A) in GB transforms from flake-like paralleling to the bainite ferrite laths to granular morphology. It is also found that the average width of laths in finer GB can be refined from 532 nm to 302 nm, which improves the comprehensive properties of DLD 12 CrNi2 Y alloy steel such as high hardness of 342 ± 9 HV_(0.2), yield strength of 702 ± 16 MPa, tensile strength of 901 ± 14 MPa and large elongation of15.2%±0.6%. The DLD 12CrNi2 Y material with good strength and toughness could meet the demand of alloy steel components manufacturing.
        This work aims to establish the effect of laser energy area density(EAD) as the laser incident energy on density, microstructures and mechanical properties of direct laser deposition(DLD) 12CrNi2 Y alloy steel.The results show that the density of DLD 12CrNi2 Y alloy steel increases at initial stage and then decreases with an increase of EAD, the highest density of alloy steel sample is 98.95%. The microstructures of DLD12CrNi2 Y alloy steel samples are composed of bainite, ferrite and carbide. With increase of EAD, the microstructures transform from polygonal ferrite(PF) to granular bainite(GB). The martensite-austenite constituent(M-A) in GB transforms from flake-like paralleling to the bainite ferrite laths to granular morphology. It is also found that the average width of laths in finer GB can be refined from 532 nm to 302 nm, which improves the comprehensive properties of DLD 12 CrNi2 Y alloy steel such as high hardness of 342 ± 9 HV_(0.2), yield strength of 702 ± 16 MPa, tensile strength of 901 ± 14 MPa and large elongation of15.2%±0.6%. The DLD 12CrNi2 Y material with good strength and toughness could meet the demand of alloy steel components manufacturing.
引文
[1] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57(2013)133–164.
    [2] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117(2016)371–392.
    [3] L. Bian, S.M. Thompson, N. Shamsaei, JOM 67(2015)629–638.
    [4] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M.Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92(2018)112–224.
    [5] D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese, A. Clare, CIRP Ann.-Manuf. Technol. 66(2017)659–681.
    [6] Y.Y. Zhu, X.J. Tian, J. Li, H.M. Wang, J. Alloys Compd. 616(2014)468–474.
    [7] M.D. Krivilyov, S.D. Mesarovic, D.P. Sekulic, J. Mater. Sci. 52(2016)4155–4163.
    [8] L.E. Murr, J. Mater. Sci. Technol. 32(2016)987–995.
    [9] S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, Addit. Manuf. 8(2015)36–62.
    [10] D.D. Gu, C.L. Ma, M.J. Xia, D.H. Dai, Q.M. Shi, Eng. 3(2017)675–684.
    [11] R.J. Hebert, J. Mater. Sci. 51(2015)1165–1175.
    [12] H.Z. Yu, S.R. Cross, C.A. Schuh, J. Mater. Sci. 52(2017)4288–4298.
    [13] F.G. Liu, X. Lin, M.H. Song, H.O. Yang, Y.Y. Zhang, L.L. Wang, W.D. Huang, J.Alloys Compd. 621(2015)35–41.
    [14] R.S. Amano, P.K. Rohatgi, Mater. Sci. Eng. A 528(2011)6680–6693.
    [15] G.F. Sun, R. Zhou, J.Z. Lu, J. Mazumder, Acta Mater. 84(2015)172–189.
    [16] C.P. Huang, X. Lin, F.C. Liu, J. Cao, F.G. Liu, W.D. Huang, Int. J. Adv. Manuf.Technol. 82(2015)1269–1279.
    [17] Z.C. Liu, W.L. Cong, H. Kim, F. Ning, Q.H. Jiang, T. Li, H.C. Zhang, Y.G. Zhou,Procedia Manuf. 10(2017)912–922.
    [18] H. Kim, Z.C. Liu, W.L. Cong, H.C. Zhang, Materials 10(2017)1283.
    [19] S. Bhattacharya, G.P. Dinda, A.K. Dasgupta, J. Mazumder, Mater. Sci. Eng. A 528(2011)2309–2318.
    [20] J. Liu, J. Li, X. Cheng, H.M. Wang, J. Mater. Sci. Technol. 34(2018)643–652.
    [21] B.??etkowska, R. Dziurka, P. Ba?a, Arch. Civ. Mech. Eng. 15(2015)308–316.
    [22] J.J. Qi, W.Y. Yang, Z.Q. Sun, Acta Metall. Sin. 38(2002)629–634(in Chinese).
    [23] A. Simchi, H. Pohl, Mater. Sci. Eng. A 359(2003)119–128.
    [24] D.D. Gu, Y.F. Shen, J. Alloys Compd. 473(2009)107–115.
    [25] N. Takayama, G. Miyamoto, T. Furuhara, Acta Mater. 145(2018)154–164.
    [26] X.M. Zhang, Z.M. Shi, R.Y. Zhang, Z.F. Li, Hot Work. Technol. 37(2008)45–47(in Chinese).
    [27] D.K. Yang, D. Mei, Z.F. Li, Ordnance Mater. Sci. Eng. 25(2002)18–25(in Chinese).
    [28] I. Kim, M. Lee, Y. Choi, N. Kang,Steel Res. Int. 89(2017), 1700278.
    [29] C. Selcuk, Powder Metall. 54(2011)91–99.
    [30] A. Raghavan, H.L. Wei, T.A. Palmer, T. DebRoy, J. Laser Appl. 25(2013)1207–1216.
    [31] J. Chen, S. Tang, Z.Y. Liu, G.D. Wang, Mater. Sci. Eng. A 559(2013)241–249.
    [32] J.P. Naylor, Metall. Mater. Trans. A 10(1979)861–873.
    [33] Y.M. Ren, X. Lin, X. Fu, H. Tan, J. Chen, W.D. Huang, Acta Mater. 132(2017)82–95.
    [34] Z.H. Dong, H.W. Kang, Y.J. Xie, C.T. Chi, X. Peng, Appl. Laser 38(2018)1–6(in Chinese).
    [35] S.Y. Chen, R.X. Wang, X.T. Chen, J. Liang, C.S. Liu, J. Laser Appl. 30(2018)1–8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700