用户名: 密码: 验证码:
滇西北红山—红牛铜矿成矿物源:矿物学和稳定同位素约束
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metallogenic sources of the Hongshan-Hongniu copper deposit in northwestern Yunnan:constraints from mineralogy and stable isotope
  • 作者:王鹏 ; 董国臣 ; 李雪峰 ; 陈薇 ; 李建新 ; 陶兴雄
  • 英文作者:WANG Peng;DONG Guochen;LI Xuefeng;CHEN Wei;LI Jianxin;TAO Xingxiong;School of Earth Sciences and Resources,China University of Geosciences(Beijing);No.3 Geological Team of the Bureau of Mineral Resources of Yunnan;Yunnan Gold Mining Industry Group;
  • 关键词:矿物学 ; 稳定同位素 ; 成矿流体 ; 成矿物质 ; 红山—红牛铜矿 ; 中甸
  • 英文关键词:mineralogy;;stable isotope;;ore-forming fluids;;ore-forming material;;Hongshan-Hongniu copper deposit;;Zhongdian
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质大学(北京)地球科学与资源学院;云南省地质矿产勘查开发局第三地质大队;云南黄金矿业集团股份有限公司;
  • 出版日期:2017-05-08 09:52
  • 出版单位:地学前缘
  • 年:2017
  • 期:v.24;No.128
  • 基金:国家重点基础研究发展计划“973”项目(2015CB452604);; 中国地质调查局研究项目(1212011220920)
  • 语种:中文;
  • 页:DXQY201706017
  • 页数:18
  • CN:06
  • ISSN:11-3370/P
  • 分类号:180-197
摘要
本文研究了中甸弧南段红山—红牛铜矿主要夕卡岩矿物石榴石和辉石成因矿物学特征,显示矿区石榴石为钙铁-钙铝石榴石系列,早期多为钙铁榴石,晚期为钙铝榴石。矿区部分石榴石在背散射光下可以观察到明显的环带结构,钙铝榴石和钙铁榴石含量差别越大环带越明显。矿区辉石主要为次透辉石和少量的透辉石,表明夕卡岩早期成矿流体为高温、酸性和高氧逸度环境。矿区黄铁矿强富铁亏硫且Co/Ni>1,黄铜矿S、Fe和Cu含量较稳定只含有少量的C、Ni和Se,均指示为高温岩浆热液成因。金属硫化物34S众值出现在3.8‰~5.6‰,同时代的石英二长斑岩34S在4.7‰~7.8‰,表明硫主要来自石英二长斑岩。金属矿物和石英二长斑岩铅同位素特征表明,铅主要来自上地壳。石榴石δ~(18)O_(V-SMOW)=6‰~8.8‰,成矿流体δ~(18) OH_2O=4.6‰~7.8‰,反映成矿流体主要来自岩浆热液,且成矿流体存在明显的沸腾作用。夕卡岩矿体中的方解石和围岩方解石C-O同位素研究,指示块状硫化物中的方解石来自岩浆流体,含有硫化物细脉的围岩大理岩中的方解石来自围岩的再结晶作用。
        The Hongshan-Hongniu super-large skarn copper deposit is located in the southern Zhongdian island arc.In this paper,to decipher the ore-forming fluid source and ore-forming material,genetic mineralogy characterization of garnet,pyroxene,pyrite and chalcopyrite were carried out and elemental analyses of C,H,O,S and Pb were performed.The results show that the garnet belongs to grossular-andradite,and the andradite was formed prior to grossular;whereas the pyroxene is mainly consisted of sahlite and diopside,indicating that the early acid ore-forming stage had high temperature and high oxygen fugacity.In the Hongshan-Hongniu deposit,the pyrite is enriched in Fe and depleted in S,with Co/Ni>1,suggesting a magmatic hydrothermal source.The garnet yielded δ~(18)O and δD values of 6‰-8.8‰ and-93.1‰--149‰,respectively,and the calcite from massive sulfide ranged in δ~(13)C_(V-PDB) and δ~(18)O_(V-SMOW) values of -2.7‰-2.5‰ and 11.4‰-23.4‰,respectively,suggesting that the magmatic hydrothermal fluid was dominant whilst meteoric water was negligible during mineralization in the Hongshan-Hongniu deposit.δ~(34)S content of the sulfides and quartz monzonite porphyry spanned small ranges from 3.8‰ to 5.6‰,and from 4.7‰to 7.8‰,respectively,demonstrating that the ore-forming materials were originated from the quartz monzonite porphyry which had a single crustal source with material contribution from the mantle.Lead isotopes exhibited the features of the lower crust and a minor derivation from the upper crust and orogenic lead.
引文
[1]LI W C,ZING P S,HOU Z Q,et al.The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province,Southwest China[J].Economic Geology,2011,1:79-92.
    [2]李文昌,刘学龙.云南普朗斑岩型铜矿田构造岩相成矿规律与控矿特征[J].地学前缘,2015,22(4):53-66.
    [3]LENG C B,ZHANG X C,HU R Z,et al.Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian,Northwest Yunnan,China[J].Journal of Asian Earth Sciences,2012,60:31-48.
    [4]DENG J,WANG Q F,LI G J,et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang regio,SW China[J].Gondwana Research,2014,26:419-437.
    [5]DENG J,WANG Q F,LI G J,et al.Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region,southwestern China[J].Earth-Science Reviews,2014,138:268-299.
    [6]CHEN J L,XU J F,REN J B,et al.Geochronology and geochemical characteristics of Late Triassic porphyritic rocks from the Zhongdian arc,eastern Tibet,and their tectonic and metallogenic implications[J].Gondwana Research,2014,26:492-504.
    [7]冷成彪,张兴春,王守旭,等.滇西北雪鸡坪斑岩铜矿S-Pb同位素组成及对成矿物质来源的示踪[J].矿物学报,2008,28(4):80-88.
    [8]冷成彪,张兴春,秦朝建,等.滇西北雪鸡坪斑岩铜矿流体包裹体初步研究[J].岩石学报,2008,24(9):2017-2028.
    [9]林清茶,夏斌,张玉泉,等.云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义[J].地质通报,2006,25(1/2):133-138.
    [10]王守旭,张兴春,秦朝建,等.滇西北中甸普朗斑岩铜矿流体包裹体初步研究[J].地球化学,2007,36(5):467-478.
    [11]徐兴旺,蔡新平,屈文俊,等.滇西北红山晚白垩石花岗斑岩型Cu-Mo成矿系统及其大地构造学意义[J].地质学报,2006,80(9):1421-1433.
    [12]王新松,毕献武,冷成彪,等.滇西北红山Cu多金属矿床花岗斑岩锆石LA-ICP-MS U-Pb定年及其地质意义[J].矿物学报,2011,31(3):315-320.
    [13]李文昌,王可勇,尹光侯,等.滇西北红山铜矿床成矿流体地球化学特征及矿床成因[J].岩石学报,2013,29(1):270-282.
    [14]宋保昌,蔡新平,徐兴旺,等.云南中甸红山铜-多金属矿床新生代热泉喷流沉积矿床[J].地质科学,2006,41(4):700-710.
    [15]常开永.香格里拉县红牛夕卡岩型铜矿[J].云南地质,2006,25(1):12-18.
    [16]李建康,李文昌,王登红,等.中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报,2007,23(10):2415-2422.
    [17]邹顺坤,张志平.香格里拉红牛铜多金属矿成矿模式及深部找矿[J].云南地质,2010,29(3):299-303.
    [18]王守旭,张兴春,冷成彪,等.中甸红山夕卡岩铜矿稳定同位素特征及其对成矿过程的指示[J].岩石学报,2008,24(3):480-488.
    [19]黄肖潇,许继峰,陈建林,等.中甸岛弧红山地区两期中酸性侵入岩的年代学、地球化学特征及其成因[J].岩石学报,2012,28(5):1493-1506.
    [20]曾普胜,王海平,莫宣学,等.中甸岛弧带构造格架及斑岩铜矿前景[J].地球学报,2004,25(5):535-540.
    [21]彭惠娟,张长青,周云满,等.云南省中甸红牛铜矿地球化学特征[J].中国地质,2012,39(6):1743-1758.
    [22]孟健寅,杨立强,吕亮,等.滇西北红山铜钼矿床辉钼矿ReOs同位素测年及其成矿意义[J].岩石学报,2013,29(4):1214-1222.
    [23]WANG P,DONG G C,SANTOSH M,et al.Zircon U-Pb geochronology,geochemistry and Hf isotopes of the Late Cretaceous Hongshan intrusion,western Yunnan[J].Geological Journal,2016,51:308-323.
    [24]PENG H J,MAO J W,PEI R F,et al.Geochronology of the Hongniu-Hongshan porphyry and skarn Cu deposit,northwestern Yunnan Province,China:implications for mineralization of the Zhongdian arc[J].Journal of Asian Earth Sciences,2013,79(5):682-695.
    [25]陈能松,孙敏,杨勇,等.变质岩的成分环带与变质过程[J].地学前缘,2003,10(3):315-320.
    [26]应立娟,唐菊兴,王登红,等.西藏甲玛超大型铜矿石榴子石特征及其成因意义[J].地质学报,2012,36(11):1735-1747.
    [27]赵斌,BARTON M D.接触交代夕卡岩型矿床中石榴子石和辉石成分特点及其与矿化的关系[J].矿物学报,1987,7(1):1-7.
    [28]单强,张兵,罗勇,等.新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学[J].岩石学报,2009,25(6):1456-1464.
    [29]俎波,薛春纪,亚夏尔,等.云南香格里拉红山铜矿石硫化物环带及地质意义[J].岩石学报,2013,29(4):1203-1213.
    [30]彭建堂,胡瑞忠,苏文超.扬子地块南缘锑矿床中矿石铅的组成及其地质意义[J].地球化学,2000,28(4):43-47.
    [31]WANG P,DONG G C,SANTOSH M,et al.Copper isotopes trace the evolution of skarn ores:a case study from the Hongshan-Hongniu Cu deposit,southwest China[J].Ore Geology Reviews,2017,88:822-831.
    [32]付伟,柴明春,杨启军,等.广西佛子冲大型铅锌多金属矿床的成因:流体包裹体和H-O-S-Pb同位素地球化学约束[J].岩石学报,2013,29(12):4136-4150.
    [33]彭建堂,胡瑞忠.湘中锡矿山超大型锑矿床的C、O同位素体系[J].地质论评,2001,47(1):34-41.
    [34]BOTTINGA Y,JAVOY M.Comments on oxygen isotope geothermometry[J].Earth and Planetary Science Letters,1973,20:251-265.
    [35]REVAN M K,GENY,Maslennikov V V,et al.Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper Cretaceous VMS deposits of the eastern Pontide orogenic belt(NE Turkey)[J].Ore Geology Reviews,2014,63:129-149.
    [36]KOGLIN N,FRIMMEL H E,MINTERW E L,et al.Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoprotero-zoic placer deposits[J].Mineralium Deposita,2010,45:259-280.
    [37]郑有业,高顺宝,张大权,等.西藏驱龙超大型斑岩铜矿床成矿流体对成矿的控制[J].地球科学:中国地质大学学报,2006,31(3):349-359.
    [38]张术根,杨惠芳,丁存根,等.宁镇中段夕卡岩的石榴子石与成矿的关系研究[J].矿物岩石,2009,29(2):44-53.
    [39]ANNIKA D,KATHARINA W,JOCHEN K F,et al.Significance of oscillatory and bell-shaped growth zoning in hydrothermal garnet:evidence from the Navachab gold deposit,Namibia[J].Chemical Geology,2009,262:262-276.
    [40]LAWRENCE D M.Skarn zonation and fluid evolution in the Groundhog Mine,Central Mining District,New Mexico[J].Economic Geology,1987,82:523-545.
    [41]狄永军,吴淦国,张达,等.闽中地区铅锌矿床辉石成分特征及其成因意义[J].矿床地质,2006,25(2):123-134.
    [42]张景森,张静,周俊杰.夕卡岩和夕卡岩型矿床研究方法[J].河北工程大学学报(自然科学版),2009,26(1):85-89.
    [43]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    [44]RYE R O.The evolution of magmatic fluids in the epithermal environment:the stable isotope perspective[J].Economic Geology,1993,88:733-753.
    [45]TANG Y W,LI X F,ZHANG X Q,et al.Some new data on the genesis of the Linghou Cu-Pb-Zn polymetallic deposit:based on the study of fluid inclusions and C-H-O-S-Pb isotopes[J].Ore Geology Reviews,2015,71:248-262.
    [46]芮宗瑶,李荫清,王龙生,等.初论成矿流体及金属矿物富集系统[J].矿床地质,2002,21(1):83-89.
    [47]HARRIS A C,KHMELNITSKY V S,WHITE N C,et al.Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit,NW Argentina[J].Resource Geology,2004,54(3):341-356.
    [48]彭惠娟,李洪英,裴荣富,等.云南中甸红牛-红山夕卡岩型铜矿床矿物学特征与成矿作用[J].岩石学报,2014,30(1):237-256.
    [49]毛景文,赫英,丁悌平.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J].矿床地质,2002,21(2):121-127.
    [50]刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质,2004,23:1-10.
    [51]钟康惠,廖文,宋梦莹,等.云南会泽铅锌矿床硫同位素问题探讨[J].成都理工大学学报(自然科学版),2013,40(2):130-138.
    [52]VIKER P G,POULSON S R,KOENIC A E.Derivation of Sand Pb in Phanerozoic intrusion-related metal deposits from Neoproterozoic sedimentary pyrite,Great Basin,United States[J].Economic Geology,2011,106:883-912.
    [53]GEMMELL J B,JONASSON I R,HERZIC P M.Sulfur isotope evidence for magmatic contributions to submarine and subaerial gold mineralization:conical seamount and the Ladolam Gold Deposit,Papua New Guinea[J].Economic Geology,2004,99:1711-1725.
    [54]MARINI L,MORETTI R,ACCORNERO M.Sulfur isotopes in magmatic-hydrothermal systems,melts,and magmas[J].Reviews in Mineralogy and Geochemistry,2011,73:423-492.
    [55]冷成彪,张兴春,王守旭,等.滇西北雪鸡坪斑岩铜矿S-Pb同位素组成及对成矿物质来源的示踪[J].矿物学报,2008,28(4):80-88.
    [56]FIEGE A,HOLTZ F,SHIMIZU N,et al.Sulfur isotope fractionation between fluid and andesitic melt:an experimental study[J].Geochimica et Cosmochimica Acta,2014,142:501-521.
    [57]JUGO P J,WILKE M,BOTCHARNIKOV R E.Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses:implications for S speciation and S content as function of oxygen fugacity[J].Geochimica et Cosmochimica Acta,2010,74:5926-5938.
    [58]ZARTMAN R E,DOE B R.Plumbotectonic:the model[J].Tectonophysics,1981,75:135-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700