用户名: 密码: 验证码:
夹卷对郊外大气边界层内臭氧影响的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:NUMERICAL SIMULATION OF THE IMPACT OF ENTRAINMENT ON OZONE CONCENTRATION IN THE RURAL ATMOSPHERIC BOUNDARY LAYER
  • 作者:戚慧雯 ; 包云轩 ; 黄建平 ; 张潇艳 ; 刘诚 ; 赵恺辉
  • 英文作者:QI Hui-wen;BAO Yun-xuan;HUANG Jian-ping;ZHANG Xiao-yan;LIU Cheng;ZHAO Kai-hui;Collaborative Innovation Center on Forecast Meteorological Disaster Warning and Assessment, Nanjing University of Information Science and Technology;Yale-NUIST Center on Atmospheric Environment,Nanjing University of Information Science & Technology;
  • 关键词:臭氧 ; 夹卷 ; CLASS模 ; 数值模拟 ; 大气边界层
  • 英文关键词:ozone;;entrainment;;Chemistry Land-surface Atmosphere Soil Slab Model;;numerical simulation;;atmospheric boundary layer
  • 中文刊名:RDQX
  • 英文刊名:Journal of Tropical Meteorology
  • 机构:南京信息工程大学气象灾害预报和评估协同创新中心;耶鲁大学-南京信息工程大学大气环境中心;
  • 出版日期:2018-10-15
  • 出版单位:热带气象学报
  • 年:2018
  • 期:v.34
  • 基金:国家自然科学基金(41575009);; 咸阳市重大科技计划项目(2017K01-35);; 江苏省科技支撑计划项目(BE2014734);; 江苏省研究生培养创新工程项目(KYLX16_0945)共同资助
  • 语种:中文;
  • 页:RDQX201805013
  • 页数:8
  • CN:05
  • ISSN:44-1326/P
  • 分类号:139-146
摘要
夹卷是大气边界层与自由大气进行能量和物质交换的重要途径,对边界层动力结构及边界层内温度、水汽和各种污染物浓度有重要影响。利用化学蛳地表蛳大气蛳土壤(CLASS)模式定量评估了夹卷过程对远郊地区大气边界层内臭氧(O3)浓度的影响并与大气化学反应贡献进行了对比,结合地面O3、NOx及边界层高度、位温和比湿等观测资料和再分析资料对CLASS模拟结果进行了定量评估。结果表明:CLASS模式能较为真实地模拟夹卷和大气光化学反应对远郊地区大气边界层臭氧浓度的影响,且当自由大气层内臭氧浓度达到一定值时,两者对边界层内臭氧峰值影响相当。数值试验结果进一步揭示,夹卷对控制氮氧化物(NOX)和可挥发性有机物(VOCS)排放源控制效果有重要影响,且当夹卷区内O3跳跃值增大到一定时,可完全抵消源排放减排控制的效果。本研究旨在表明,为有效控制近地层臭氧浓度,在制定人为污染源减排措施时必须考虑自由大气层臭氧的夹卷贡献。
        Entrainment is an important way for the exchange of heat, water and air pollutants between the atmospheric boundary layer and the free atmosphere. A zero-order model of Chemistry, Land-surface,Atmosphere, and Soil Slab(CLASS) was used to quantify the impact of entrainment influence on O3 concentrations in the atmospheric boundary layer and compare its contribution with that of chemical reactions at a rural site. A series of observational data including O3, NOx, the boundary layer height, and potential temperature as well as reanalyzed data was used to evaluate the simulations. The results demonstrated that the CLASS model was able to capture the temporal variations in the atmospheric boundary layer height, surface temperature, O3, and other chemical species. The entrainment has a competitive impact on O3 in the PBL as compared to chemical reactions. The numerical experiments further showed that the relative contribution of entrainment increased with increasing O3 jumps; the entrainment exerted an important impact on the control effectiveness of emission reduction of nitrogen oxides(NOx) and volatile organic compounds(VOCs) and even totally counteracted the emission reduction effect. The study provides scientific evidence that entrainment must be considered in order to control surface O3 concentrations effectively while the emissions were reduced.
引文
[1] CHAMEIDES W L, LI X, TANG X, et al. Is ozone pollution affecting crop yields in China?[J]. Geophys Res Lett, 1999, 26(7):867-870.
    [2]王雪松,李金龙,张远航,等.北京地区臭氧污染的来源分析[J].中国科学B辑:化学, 2009, 39(6):548-559.
    [3]王自发,李丽娜,吴其重,等.区域输送对北京夏季臭氧浓度影响的数值模拟研究[J].自然杂志, 2008, 30(4):194-198.
    [4] ARELLANIO V G D J,PATTON E G,KARL T,et al. The role of boundary layer dynamics on the diurnal evolution of isoprene and thehydroxyl radical over tropical forests[J]. J Geophys Res,2011,116,D07304.
    [5]周晨虹.大气臭氧和二氧化氮的变化及其影响因素[D].南京:南京信息工程大学,2013.
    [6] SOLOMON S. Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC[M]. Cambridge:Cambridge University Press,2007.4.
    [7] STAEHELIN J, HARRIS N R P, APPENZELLER C, et al. Ozone trends:A review[J]. Reviews of Geophysics, 2001, 39(2):231-290.
    [8] FISHMAN J, CRUTZEN P J. The origin of ozone in the troposphere[J]. Nature, 1978, 274(5):9 641-9 668.
    [9] LIU H, JACOB D J, CHAN L Y, et al. Sources of tropospheric ozone along the Asian Pacific Rim:An analysis of ozone sodarobservations[J]. Geophys Res Lett, 2002, 107(D21):ACH 3-1-ACH 3-19.
    [10] JACOB D J, LOGAN J A, MURTI P P. Effect of rising Asian emissions on surface ozone in the United States[J]. Geophys Res Lett, 1999, 26(14):2 175-2 178.
    [11] PENKETT S A, EVANS M J, REEVES C E, et al. Long-range transport of ozone and related pollutants over the North Atlantic in springand summer[J]. Atmos Chem Phys, 2004, 4(4):4 407-4 454.
    [12] LILLY D K. Models of cloud-topped mixed layer under a strong inversion[J].Quart J Roy Meteor Soc,1968, 94(401):292-309.
    [13] DEARDORFF J W. Prediction of convective mixed-layer entrainment for realistic capping inversion structure[J]. Atmos Sci, 1979, 36(3):424-436.
    [14] FLAMANT C, PELON J, FLAMANT P P, et al. Lidar determination of the entrainment zone thickness at the top of the unstable marineatmospheric boundary layer[J].Bound-Layer Meteor, 1997, 83(2):247-284.
    [15] ANGEVINE W M, GRIMSDELL A W, MCKEEN S A. Entrainment results from the Flatland boundary layer experiment[J]. J Geophys Res,1998, 103(D12):13 689-13 701.
    [16] BEYRICH F, GRYNING S E. Estimation of the entrainment zone depth in a shallow convective boundary layer from sodar data[J]. J ApplMeteor, 1998, 37(3):255-268.
    [17] BOERS R A, ELORANTA E W. Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across thetop of the mixed layer[J].Bound-Layer Meteor, 1986, 34(4):357-375.
    [18] HAGELI P, STEYN D G, STRAWBRIDGE K B. Spatial and temporal variability of mixed-layer depth and entrainment zone thickness[J].Bound-Layer Meteor, 2000,97(1):47-71.
    [19]林恒,孙鉴泞,袁仁民.对流边界层顶部夹卷层厚度特征及其参数化分析[J].中国科学技术大学学报, 2008,38(1):50-56.
    [20]鲁明之,周明煜.对流边界层中夹卷作用的研究[J].大气科学, 1988, 12(4):421-429.
    [21]苗世光,蒋维楣,李昕,等.对流边界层大涡模式的改进及对夹卷速度的研究[J].大气科学,2001,25(1):26-36.
    [22]罗涛,袁仁民,孙鉴泞.对流边界层夹卷通量参数化的室内模拟研究[J].大气与环境光学学报,2006,1(3):173-178.
    [23] PINO D, VILA-GUERAU DE ARELLANO J, PETERS W, et al. A conceptual framework to quantify the influence of convectiveboundary layer development on carbon dioxide mixing ratios[J]. Atmos Chem Phys, 2012, 12(6):2 969-2 985.
    [24] HEERWAARDEN C C, TEULING A J. Disentangling the response of forest and grassland energy exchange to heatwaves under idealizedland-atmosphere coupling[J]. Biogeosciences, 2014,11:6 159-6 171.
    [25] STRATUM B J H V, AREUAND V G D J, OUWERSLOOT H G, et al. Case study of the diurnal variability of chemically active specieswith respect to boundary layer dynamics during DOMINO[J]. Atmos Chem Phys, 2012, 12(12):5 329-5 341.
    [26] T N CHIU, C L SO. A Geography of Hong Kong, 2nd Edition[M]. Oxford:University Press.1986.
    [27]赵恺辉,包云轩,黄建平,等.华南地区春季平流层入侵对对流层低层臭氧影响的模拟研究[J].大气科学,投稿中.
    [28]陈闯,田文寿,田红瑛,等.青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J].高原气象, 2012, 31(2):295-303.
    [29]郑向东,陈尊裕,崔宏,等.长江三角洲地区春季低空大气臭氧垂直分布特征[J].中国科学D辑地球科学,2004, 34(12):1 184-1 192.
    [30]郑永光,陈鲁言,陈尊裕,等. 2001年春季临安、昆明和香港臭氧垂直分布特征的对比分析[J].北京大学学报(自然科学版), 2005, 41(1):104-114.
    [31] VILA-GUERAU DE ARELLANO J. Atmospheric Boundary Layer, Integrating Air Chemistry and Land Interactions[M]. Cambridge UniversityPress, New York, 2015:265.
    [32] OUWERSLOOT H G, VILA-GUERAU DE ARELLANO J, STRATUM, et al. Quantifying the transport of subcloud layer reactants byshallow cimulus clouds over the Amazon[J]. Journal of Geophysical Research:Atmospheres, 2013,118(23):13 041-13 059.
    [33] PINO D, VILA-GUERAU DE ARELLANO J, KIM S W, et al. Representing sheared convective boundary layer by Zeroth-and First-Order-Jump Mixed-Layer Models:Large-Eddy simulation verification[J]. J Applied Meteorology and Climatology, 2006, 45(9):1 224-1 243.
    [34] BETTS A K. Non-precipitating cumulus convection and its parameterization[J]. Quart J Roy Meteorol Soc, 1973, 99(419):178-196.
    [35] BETTS A K. Reply to comment on the paper “Non-precipitating cumulus convection and its parameterization”[J]. Quart J Roy MeteorolSoc, 1974, 100(423):469-471.
    [36] TENNEKES H. A model for the dynamics of the inversion above a convective boundary layer[J]. Atmos Sci, 1973, 30(4):558-567.
    [37] PIETERSEN H P, VILA-GUERAU DE ARELLANO J, AUGUSTIN P, et al. Study of a prototypical convective boundary layer observedduring BLLAST:contributions by large-scale forcings[J]. Atmos Chem Phys, 2015, 14(13):19 247-19 291.
    [38] HEERWAARDEN C C VAN, VILA-GUERAU DE ARELLANO J, MOENE A F, et al. Interactions between dry-air entrainment, surfaceevaporation and convective boundary-layer development[J]. Quart J Roy Meteorol Soc, 2009,135(642):1 277-1 291.
    [39]申倩倩.上海地区臭氧数值模拟研究[D].上海:华东师范大学,2011.
    [40]沈毅.南京大气污染特征及空气质量预报研究[D].南京:南京大学,2011.
    [41]闫文君,刘敏,刘世杰,等.基于CMAQ模式的中国大气Ba P迁移转化模拟研究[J].中国环境科学,2016,36(6):1 681-1 689.
    [42]赵秀娟,姜华,王丽涛,等.应用CMAQ模型解析河北南部城市的霾污染来源[J].环境科学学报,2012,32(10):2 559-2 667.
    [43]丁菊丽,费建芳,黄小刚,等.稳定层结条件下非线性相似函数对蒸发波导模型的改进[J].热带气象学报,2011,27(3):410-416.
    [44]张文琪,刘萍,晏乃强,等.沿海城市大气汞的数值模拟研究[J].环境科学与技术,2013, 36(8):164-169.
    [45]杨昕,李永生.近地面O3变化化学反应机理的数值研究[J].大气科学,1999, 23(4):428-438.
    [46]姚女.典型沿海城市二次有机气溶胶的数值模拟研究[D].上海:上海交通大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700