用户名: 密码: 验证码:
废旧镍钴锰酸锂电池正极材料闭环回收
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Closed-loop recovery of anode materials for spent nickel-cobalt manganate lithium battery
  • 作者:郑莹 ; 凌海 ; 莫文婷 ; 周钦文 ; 高迎龙 ; 蒋永议 ; 刘建文
  • 英文作者:ZHENG Ying;LING Hai;MO Wenting;ZHOU Qinwen;GAO Yinglong;JIANG Yongyi;LIU Jianwen;College of Urban Construction, Wuchang Shouyi University;College of Chemistry and Chemical Engineering, Hubei University;
  • 关键词:废旧镍钴锰酸锂 ; 闭环回收 ; 浸出 ; 化学沉淀 ; 碳酸锂
  • 英文关键词:spent nickel-cobalt manganate lithium;;closed-loop recovery;;leaching;;chemical precipitation;;lithium carbonate
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:武昌首义学院城市建设学院;湖北大学化学化工学院;
  • 出版日期:2019-05-05 14:25
  • 出版单位:环境工程学报
  • 年:2019
  • 期:v.13
  • 基金:湖北省自然科学基金一般面上项目(2018CFB785)
  • 语种:中文;
  • 页:HJJZ201905019
  • 页数:8
  • CN:05
  • ISSN:11-5591/X
  • 分类号:155-162
摘要
提出了一种闭环回收废旧镍钴锰酸锂电池正极活性物质的方法。采用H_2SO_4为浸出剂,H_2O_2为还原剂,浸出回收4种金属离子。结果表明:硫酸浓度为1.5 mol·L~(-1),反应温度为70℃,反应时间为25 min,反应固液比为20∶1 (g∶L),过氧化氢体积分数为1%时,金属镍、钴、锰和锂的浸出率分别为96.8%、96.2%、93.8%和99.1%;动力学分析显示,Ni、Co、Mn、Li浸出反应表观活化能分别为51.75、44.90、46.77和36.08 kJ·mol~(-1),属于化学反应控制。分离浸出滤液中Ni、Co、Mn离子后,制备Li_2CO3终端产品,其XRD图谱显示产品成分较纯,可用于制备锂离子电池正极材料的前驱体。该工艺可实现废旧镍钴锰酸锂正极材料回收较高的经济和环境效益。
        In this study, a closed-loop method for recovering the active material in anode of spent nickel-cobalt manganic acid lithium battery was proposed, which H_2 SO_4 and H_2 O_2 were used as leaching agent and the reducing agent, respectively, and four metal ions could be recovered through leaching. The results showed that the leaching rates of nickel, cobalt, manganese and lithium were 96.8%, 96.2%, 93.8% and 99.1%, respectively,at sulfuric acid concentration of 1.5 mol·L~(-1), reaction temperature of 70 ℃, reaction time of 25 min, solid-liquid ratio of 20∶1(g∶L) and H_2 O_2 volume ratio of 1%. Kinetic analysis indicated that the apparent activation energies of Ni, Co, Mn and Li leaching were 51.75, 44.90, 46.77 and 36.08 kJ·mol~(-1), respectively, which could belong to chemical reaction control. The Ni, Co and Mn ions separated from the leachate were used to prepare the Li_2 CO3 terminal product, and its XRD pattern indicated a relatively pure ingredient, which can be used to prepare the precursor of the anode material for lithium ion battery. Through this closed-loop method, the high economic and environmental benefits of recycling nickel-cobalt manganic lithium anode materials can be achieved.
引文
[1]赛迪智库. 2017年动力电池出货量突破60 GWh[EB/OL].(2018-03-20)[2018-12-16]. http://www.china-nengyuan.com/news/122296.html.
    [2] ZHANG X, XIE Y, LIN X, et al. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management, 2013, 15(4):420-430.
    [3] AL-THYABAT S, NAKAMURA T, SHIBATA E, et al. Adaptation of minerals processing operations for lithium-ion(LIBs)and nickel metal hydride(NiMH)batteries recycling:Critical review[J]. Minerals Engineering, 2013, 45:4-17.
    [4] SENCANSKI J, BAJUK-BOGDANOVIC D, MAJSTOROVIC D, et al. The synthesis of Li(Co-Mn-Ni)O2cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions[J]. Journal of Power Sources, 2017, 342:690-703.
    [5] YANG Y, XU S, HE Y. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes[J]. Waste Management, 2017, 64:219-227.
    [6] ZENG X, LI J, LIU L. Solving spent lithium-ion battery problems in China:Opportunities and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52:1759-1767.
    [7] HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46:523-528.
    [8] CHEN X, FAN B, XU L, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2016, 112:3562-3570.
    [9] LI L, QU W, ZHANG X, et al. Succinic acid-based leaching system:A sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. Journal of Power Sources, 2015, 282:544-551.
    [10] SUN L, QIU K. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2011, 194:378-384.
    [11] ZENG G, DENG X, LUO S, et al. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2012, 199:164-169.
    [12] XIN Y, GUO X, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116:249-258.
    [13] ZHENG X, ZHU Z, LIN X, et al. A mini-review on metal recycling from spent lithium ion batteries[J]. Engineering, 2018, 4:361-370.
    [14] CHEN X, GUO C, MA H, et al. Organic reductants based leaching:A sustainable process for the recovery of valuable metals from spent lithium ion batteries[J]. Waste Management, 2018, 75:459-468.
    [15] CHEN X, MA H, LUO C, et al. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid[J]. Journal of Hazardous Materials, 2017, 326:77-86.
    [16] LI L, BIAN Y, ZHANG X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71:362-371.
    [17] LI L, FAN E, GUAN Y, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry&Engineering, 2017, 5(6):5224-5233.
    [18] WANG H, HUANG K, ZHANG Y, et al. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system[J]. ACS Sustainable Chemistry&Engineering, 2017, 5(12):11489-11495.
    [19] CHEN X, CHEN Y, ZHOU T, et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries[J]. Waste Management, 2015, 38(1):349-356.
    [20] PAGNANELLI F, MOSCARDINI E, ALTIMARI P, et al. Cobalt products from real waste fractions of end of life lithium ion batteries[J]. Waste Management, 2016, 51:214-221.
    [21] MESHRAM P, ABHILASH, PANDEY B D, et al. Acid baking of spent lithium ion batteries for selective recovery of major metals:A two-step process[J]. Journal of Industrial&Engineering Chemistry, 2016, 43:117-126.
    [22] GOLMOHAMMADZADEH R, RASHCHI F, VAHIDI E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids:Process optimization and kinetic aspects[J]. Waste Management, 2017, 64:244-254.
    [23] MESHRAM P, PANDEY B D, MANKHAND T R. Hydrometallurgical processing of spent lithium ion batteries(LIBs)in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281:418-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700