用户名: 密码: 验证码:
石墨烯的制备及其应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in preparation and application of graphene
  • 作者:杜淼 ; 张光荣
  • 英文作者:Du Miao;Zhang Guangrong;College of Chemistry,Chemical Engineering and Materials Science,Shandong Normal University;School of Chemistry and Chemical Engineering,Qilu Normal University;
  • 关键词:石墨烯制备 ; 化学气相沉积法 ; 应用研究进展
  • 英文关键词:graphene preparation;;chemical vapor deposition;;application research progress
  • 中文刊名:WJYG
  • 英文刊名:Inorganic Chemicals Industry
  • 机构:山东师范大学化学化工与材料科学学院;齐鲁师范学院化学与化工学院;
  • 出版日期:2019-03-11 11:28
  • 出版单位:无机盐工业
  • 年:2019
  • 期:v.51;No.364
  • 基金:国家自然科学基金项目(21501103);; 山东省自然科学基金项目(ZR2014BL004);; 山东省高等学校科技计划项目(J15LC52);; 中国博士后科学基金项目(2016M592238)
  • 语种:中文;
  • 页:WJYG201903003
  • 页数:4
  • CN:03
  • ISSN:12-1069/TQ
  • 分类号:18-21
摘要
石墨烯具有独特的二维原子晶体结构以及众多优异性能,如高机械强度、高载流子迁移率、高光学透明性等,这些优异的力学、电学和光学等特性使得石墨烯成为化学、物理学和材料学等领域的研究热点。结合近几年国内外研究现状,综述了机械剥离法、化学剥离法和化学气相沉积法等3种制备石墨烯的方法,并分析了各种方法的优点和不足之处。介绍了石墨烯的应用研究进展,并对其未来的发展进行了展望。
        Graphene has a unique two-dimensional crystal structure and many excellent features,such as extraordinary mechanical strength,high charge carrier mobility,and high optical transparency.Graphene,which possesses remarkable mechanical,electrical,and optical properties,has become a research hotspot in the fields of chemistry,physics and materials science.Combined with domestic and foreign researches in recent years,three main methods for preparing graphene,including mechanical stripping,chemical exfoliation and chemical vapor deposition were reviewed.At the same time,the advantages and disadvantages of these methods were discussed.Finally,the research progress of application of graphene was introduced and its future development was prospected.
引文
[1] Geim A K,Novoselov K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
    [2] Novoselov K S,Geim A K.Electric field effect in atomically thin car-bon films[J].Science,2004,306(5696):666-669.
    [3] Geim A K. Graphene:status and prospects[J]. Science, 2009,324(5934):1530-1534.
    [4] Wu J S,Pisula W,Müllen K.Graphenes as potential material forelectronics[J].Chemical Reviews,2007,107(3):718-747.
    [5] Rao C N R,Sood A K.Some novel attributes of graphene[J].Journalof Physical Chemistry Letters,2010,1(2):572-580.
    [6] Allen M J,Tung V C,Kaner R B.Honeycomb carbon:a review ofgraphene[J].Chemical Reviews,2010,110(1):132-145.
    [7]刘义林,高原,鲍建设,等.功能化石墨烯掺杂熔盐的制备及性能研究[J].无机盐工业,2016,48(7):16-20.
    [8] Lee C.Measurement of the elastic properties and intrinsic strengthof monolayer graphene[J].Science,2008,321(5887):385-388.
    [9] van den Brink J.Graphene:from strength to strength[J].Nature Nano-technology,2007,2(4):199-201.
    [10] Mayorov A S,Gorbachev R V,Morozov S V,et al.Micrometer-scaleballistic transport in encapsulated graphene at room tempera-ture[J].Nano Letters,2011,11(6):2396-2399.
    [11] Solís-Fernández P,Bissett M,Ago H.Synthesis,structure and ap-plications of graphene-based 2D heterostructures[J].ChemistrySociety Reviews,2017,46(15):4572-4613.
    [12] Jan R,Habib A,Akram M A,et al.Uniaxial drawing of graphene-PVA nanocomposites:improvement in mechanical characteristicsvia strain-induced exfoliation of graphene[J].Nanoscale ResearchLetters,2016,11(1):3771-3779.
    [13] Lin Z,Karthik P S.Simple technique of exfoliation and dispersionof multilayer graphene from natural graphite by ozone-assistedsonication[J].Nanomaterials,2017,7(6):12501-12510.
    [14] Brodie B C.On the atomic weight of graphite[J].Philosophical Tr-ansactions of the Royal Society of London,1859,149:249-259.
    [15] Staudenmaier L.Verfahren zur darstellung der graphits覿ure[J].Berichte der Deutschen Chemischen Gesellschaft,1898,31(2):1481-1487.
    [16] Hummers Jr W S,Offeman R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
    [17] Li D,Müller M B,Gilje S,et al.Processable aqueous dispersion ofgraphene nanosheets[J].Nature Nanotechnology,2008,3:101-105.
    [18] Fu W Z,Zhang Z Q.One-pot hydrothermal synthesis of magneti-cally recoverable palladium/reduced graphene oxide nanocompo-sites and its catalytic applications in cross-coupling reactions[J].Journal of Colloid and Interface Science,2017,497:83-92.
    [19] Kumar R,Singh R K,Vaz A R,et al.Self-assembled and one-stepsynthesis of interconnected 3D network of Fe3O4/reduced grapheneoxide nanosheets hybrid for high-performance supercapacitor elec-trode[J].ACS Applied Materials&Interfaces,2017,9:8880-8890.
    [20] Song J,Kang S W.Regulating the catalytic function of reduced gr-aphene oxides using capping agents for metal-free catalysis[J].ACS Applied Materials&Interfaces,2017,9:1692-1701.
    [21] Peng L,Xu Z,Liu Z,et al.An iron-based green approach to 1-hproduction of single-layer graphene oxide[J].Nature Communica-tions,2015,6:57161-57169.
    [22] Babichev A V,Rykov S A,Tchernycheva M,et al.Influence of su-bstrate microstructure on the transport properties of CVD-grap-hene[J].ACS Applied Materials&Interfaces,2016,8:240-246.
    [23] Hemasiri B W N H,Kim J K,Lee J M.Fabrication of highly conduc-tive graphene/ITO transparent bi-film through CVD and organicadditives-free sol-gel techniques[J].Scientific Reports,2017,7:1786801-1786812.
    [24] Komissarov I V,Kovalchuk N G.Nitrogen-doped twisted graphenegrown on copper by atmospheric pressure CVD from a decane pre-cursor[J].Beilstein Journal of Nanotechnology,2017,8:145-158.
    [25] Pasternak I.Graphene growth on Ge(100)/Si(100)substrates byCVD method[J].Scientific Reports,2016,6:217731-217737.
    [26] Li J H,Wang G,Geng H,et al.CVD growth of graphene on NiTi al-loy for enhanced biological activity[J].ACS Applied Materials&Interfaces,2015,7:19876-19881.
    [27] Du Y,Li N,Zhang T L,et al.Reduced graphene oxide coating withanticorrosion and electrochemical property-enhancing effects ap-plied in hydrogen storage system[J].ACS Applied Materials&In-terfaces,2017,9:28980-28989.
    [28] Wan L F,Liu Y S,Cho E S,et al.Atomically thin interfacial subo-xide key to hydrogen storage performance enhancements of magne-sium nanoparticles encapsulated in reduced graphene oxide[J].Nano Letters,2017,17:5540-5545.
    [29] Cho E S,Ruminski A M.Graphene oxide/metal nano-crystal multil-aminates as the atomic limit for safe and selective hydrogen stora-ge[J]. Nature Communications, 2016, 7:108041-108047.
    [30] Kim S,Kim S K.Reduced graphene oxide/LiI composite lithiumion battery cathodes[J].Nano Letters,2017,17:6893-6899.
    [31] Chang P,Liu X X.Constructing three-dimensional honeycombedgraphene/silicon skeletons for high-performance Li-ion batteri-es[J].ACS Applied Materials&Interfaces,2017,9:31879-31886.
    [32] Mo R W,Rooney D,Sun K N,et al.3D nitrogen-doped graphenefoam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion batt-ery[J].Nature Communications,2017,8:139491-139499.
    [33] Russier J,León V,Orecchioni M,et al.Few-layer graphene killsselectively tumor cells from myelomonocytic leukemia patients[J].Angewandte Chemie International Edition,2017,56:3014-3019.
    [34] Dai C.Two-dimensional graphene augments nanosonosensitized so-nocatalytic tumor eradication[J].ACS Nano,2017,11:9467-9480.
    [35] Zhu J Q,Xu M.Graphene oxide induced perturbation to plasmamembrane and cytoskeletal meshwork sensitize cancer cells tochemotherapeutic agents[J].ACS Nano,2017,11:2637-2651.
    [36] Chen Y Y,Song X H.A phosphorylethanolamine-functionalizedsuper-hydrophilic 3D graphene-based foam filter for water purifica-tion[J].Journal of Hazardous Materials,2018,343:298-303.
    [37] Xu W L,Fang C,Zhou F L,et al.Self-assembly:a facile way of form-ing ultrathin,high-performance graphene oxide membranes for wa-ter puriflcation[J].Nano Letters,2017,17:2928-2933.
    [38] Zhu C T,Liu P,Mathew A P.Self-assembled TEMPO cellulose nano-flbers:Graphene oxide-based biohybrids for water puriflcation[J].ACS Applied Materials&Interfaces,2017,9:21048-21058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700