用户名: 密码: 验证码:
KOH改性活性炭及其对微量乙烷的吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:KOH modified activated carbon and its adsorption performance to trace ethane
  • 作者:刘霜 ; 齐天勤机 ; 张永春
  • 英文作者:LIU Shuang;QI Tian-qin-ji;ZHANG Yong-chun;State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology;
  • 关键词:活性炭 ; KOH改性 ; 乙烷 ; 穿透吸附量
  • 英文关键词:activated carbon;;KOH modified;;ethane;;breakthrough adsorption amount
  • 中文刊名:XDHG
  • 英文刊名:Modern Chemical Industry
  • 机构:大连理工大学化工学院精细化工国家重点实验室;
  • 出版日期:2019-01-21 15:21
  • 出版单位:现代化工
  • 年:2019
  • 期:v.39;No.389
  • 语种:中文;
  • 页:XDHG201903038
  • 页数:5
  • CN:03
  • ISSN:11-2172/TQ
  • 分类号:182-186
摘要
采用KOH改性椰壳活性炭(AC)作为吸附剂,调变KOH和AC的质量比(KOH/AC,以下简称碱碳比)和活化温度制备一系列改性吸附剂,通过动态吸附法评价其脱除微量乙烷的性能,并与AC进行对比研究。评价结果表明,最佳制备条件为:KOH和吸附剂的最佳碱碳比为0. 5,最佳活化温度为800℃。在该条件下制备的KOH改性AC吸附剂的乙烷穿透吸附量达到482. 1μg/g,高于AC的169. 6μg/g。表征结果显示,与AC相比,KOH改性AC表面的氧含量更高,并增加了吸附剂的微孔数量,微孔比率从75. 3%增加到了83. 9%,并有适量的介孔,该结构有利于对乙烷的吸附。
        A series of modified adsorbents are prepared by using KOH to modify coconut shell activated carbon( AC),while adjusting the ratio of KOH/AC and activation temperature.The performance of the modified adsorbents is evaluated through removing trace ethane by dynamic adsorption method and is compared with that of common AC. The evaluation results show that the optimum preparation conditions are that the optimum ratio of KOH/AC is 0. 5 and the optimum activation temperature is 800℃. The modified adsorbent that is prepared under these optimal conditions can reach an ethane breakthrough adsorption amount of 482. 1 μg·g~(-1),which is higher than the 169. 6 μg·g~(-1) for AC. The characterization results show that compared with AC,the KOH-modified AC adsorbent contains higher oxygen content in its surface,increases the number of micropores,and has an appropriate amount of mesopores.The micropore volume ratio increases to 83. 9% from 75. 3% of AC.Such a structure is good to the adsorption of ethane.
引文
[1]Montzka S A,Dlugokencky E J,Butler J H.Non-CO2greenhouse gases and climate change[J].Nature,2011,476(7358):43-50.
    [2]Mirandola A,Lorenzini E.Energy and environment and climate:From the past to the future[J].International Journal of Heat&Technology,2016,34(2):159-164.
    [3]Bousquet P,Ciais P,Miller J B,et al.Contribution of anthropogenic and natural sources to atmospheric methane variability[J].Nature,2006,443(7110):439-443.
    [4]Patankar S S,Gautam S,Rother G.Role of Confinement on adsorption and dynamics of ethane and an ethane-CO2mixture in mesoporous CPG silica[J].Journal of Physical Chemistry C,2016,120(9).
    [5]Eldridge R B.Olefin/paraffin separation technology:A review[J].Industrial&Engineering Chemistry Research,1993,32(10):2208-2212.
    [6]Demoulin O,Clef B L,Navez M,et al.Combustion of methane,ethane and propane and of mixtures of methane with ethane or propane on Pd/γ-Al2O3,catalysts[J].Applied Catalysis A General,2008,344(1):1-9.
    [7]Moura L,Mishra M,Bemales V,et al.Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids[J].Journal of Physical Chemistry B,2013,117(24):7416-7425.
    [8]Baker R.Future directions of membrane gas-separation technology[J].Membrane Technology,2002,2001(138):5-10.
    [9]Gücüyener C,Van B J,Gascon J,et al.Ethane/ethene separation turned on its head:Selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism[J].Journal of the American Chemical Society,2010,132(50):17704-17706.
    [10]Liu H,Liu B,Lin L C,et al.A hybrid absorption-adsorption method to efficiently capture carbon[J].Nature Communications,2014,5:5147.
    [11]Li Zhong,Wang Xingjie,Xia Qibin,et al.Preparation method of fluorine-doped carbon-based adsorption material capable of preferentially adsorbing ethane:CN,106268645A[P].2017-01-19.
    [12]Choi B U,Choi D K,Youngwhan Lee A,et al.Adsorption equilibria of methane,ethane,ethylene,nitrogen,and hydrogen onto activated carbon[J].Journal of Chemical&Engineering Data,2003,48(3):603-607.
    [13]Yang R T.Adsorbents:Fundamentals and applications[M].New Jersey:Wiley Inter Science,2003.
    [14]Jalilov A S,Ruan G,Hwang C C,et al.Asphalt-derived high surface area activated porous carbons for carbon dioxide capture[J].Acs Applied Materials&Interfaces,2015,7(2):1376-1382.
    [15]Wang S,Elsworth D,Liu J.Rapid decompression and desorption induced energetic failure in coal[J].Journal of Rock Mechanics and Geotechnical Engineering,2015,7(3):345-350.
    [16]黄开辉.催化原理[M].北京:科学出版社,1983:19-40.
    [17]范明霞,张智.活性炭孔径分布和表面化学性质对吸附影响的研究进展[J].煤炭加工与综合利用,2011,(1):49-54.
    [18]Dreyer D R,Park S,Bielawski C W,et al.The chemistry of graphene oxide[J].Chemical Society Reviews,2014,43(15):5288.
    [19]Zhao Z,Dai Y.Nanodiamond/carbon nitride hybrid nanoarchitecture as an efficient metal-free catalyst for oxidant-and steam-free dehydrogenation[J].Journal of Materials Chemistry A,2014,2(33):13442-13451.
    [20]Liang W,Zhang Y,Wang X,et al.Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene[J].Chemical Engineering Science,2017,162:192-202.
    [21]韩立军,李铁虎,郭恩明,等.碳/碳复合材料抗氧化方法及发展趋势[J].航空制造技术,2003,(12):26-30.
    [22]杨晓宏,胡兴华,李军.石油焦系活性炭抗氧化性能研究[J].广东化工,2012,39(1):25-27.
    [23]宫雨彤.活性炭吸附脱除低浓度乙烷的研究[D].大连:大连理工大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700