用户名: 密码: 验证码:
带一个回热器的Kalina循环的热力参数分析及优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and optimization for thermodynamic parameters of the Kalina cycle with a regenerator
  • 作者:娄聚伟 ; 王建永 ; 王江峰 ; 戴义平
  • 英文作者:LOU Juwei;WANG Jianyong;WANG Jiangfeng;DAI Yiping;Institute of Turbo Machinery,Xi'an Jiaotong University;State Key Lab Multiphase Flow Power Engineering (Xi'an Jiaotong University);
  • 关键词:Kalina循环 ; 参数分析 ; 热力优化 ; 热效率
  • 英文关键词:Kalina cycle;;parameters analysis;;thermodynamic optimization;;thermal efficiency
  • 中文刊名:ZKZX
  • 英文刊名:China Sciencepaper
  • 机构:西安交通大学叶轮机械研究所;动力工程多相流国家重点实验室(西安交通大学);
  • 出版日期:2017-12-08
  • 出版单位:中国科技论文
  • 年:2017
  • 期:v.12
  • 基金:高等学校博士学科点专项科研基金资助项目(20130201110037)
  • 语种:中文;
  • 页:ZKZX201723003
  • 页数:6
  • CN:23
  • ISSN:10-1033/N
  • 分类号:19-24
摘要
为了研究单一回热器对Kalina循环系统性能的影响,建立了带1个回热器的Kalina循环稳态数学模型,研究了循环的4个关键热力参数对Kalina循环净功和热效率的影响。对Kalina循环在不同热源温度下进行了热力参数优化,获得了循环在不同热源温度下的最大循环热效率。研究结果表明:在同一热源温度下,存在不同的最优蒸发器蒸发压力,使得循环净输出功和循环热效率分别达到最大值;循环净输出功和热效率随着蒸发器出口氨水溶液温度和氨水基本溶液浓度的增大而增大,随着透平背压的增大而减小;随着热源温度的增大,循环热效率逐渐增大,所对应的最优蒸发器蒸发压力和蒸发器出口氨水溶液温度逐渐增大,同时,透平背压和氨水基本溶液浓度逐渐降低。
        In order to study the effect of a single regenerator on the performance of the Kalina cycle system,a mathematical model was constructed and the effect of four key parameters on net power output and thermal efficiency were examined in this paper.Thermodynamic optimization was conducted under various heat source temperatures and the maximal thermal efficiency was obtained.The result shows that the maximal net power output and thermal efficiency are achieved with different evaporation pressures under the same heat source temperature.The net power output and thermal efficiency of Kalina cycle increases with the ammonia-water mixture temperature and the basic concentration of ammonia-water mixture at evaporator outlet,and decreases with the turbine backpressure.Thermal efficiency increases with an increase in the heat source temperature,and the corresponding evaporation pressure and ammonia-water mixture temperature at evaporator outlet increases.Meanwhile,the turbine backpressure and the basic concentration of ammonia-water mixture decreases.
引文
[1]BAHAA S,GERALD K,WENDLAND M,et al.Working fluids for low-temperature organic Rankine cycles[J].Energy,2007,32(7):1210-1221.
    [2]YU CHAO,XU JINLIANG,SUN YASONG.Transcritical pressure organic Rankine cycle(ORC)analysis based on the integrated-average temperature difference in evaporators[J].Applied Thermal Engineering,2015,88:2-13.
    [3]KALINA A I.Combined-cycle system with novel bottoming cycle[J].Journal of Engineering for Gas Turbines &Power,1984,106(4):737-742.
    [4]张颖,何茂刚,贾真,等.Kalina循环的热力学第一定律分析[J].动力工程,2007,27(2):218-222.ZHANG Ying,HE Maogang,JIA Zhen,et al.An analysis of Kalina cycle based on the 1st law of thermodynamics[J].Journal of Power Engineering,2007,27(2):218-222.(in Chinese)
    [5]宋忠源,李林星,陈盼盼,等.基于EES的一级蒸馏Kalina循环的热力学分析[J].发电与空调,2015,36(164):66-69.SONG Zhongyuan,LI Linxing,CHEN Panpan,et al.Thermodynamic annlasis of primary distillation Kalina cycle based on EES[J].Refrigeration Air Conditioning&Electric Power Machinery,2015,36(164):66-69.(in Chinese)
    [6]卢志勇,朱家玲,张伟,等.Kalina地热发电热力循环效率影响因素分析[J].太阳能学报,2014,35(2):326-331.LU Zhiyong,ZHU Jialing,ZHANG Wei,et al.Analysis of influencing factors on Kalina cycle geothermal power plant[J].Acta Energiae Soiaris Sinica,2014,35(2):326-331.(in Chinese)
    [7]SAFFARI H,SADEGHI S,KHOSHZAT M,et al.Thermodynamic analysis and optimization of a geothermal Kalina cycle system using artificial bee colony algorithm[J].Renewable Energy,2016,89:154-167.
    [8]李子申,李惟毅,孟金英,等.蒸发压力对卡琳娜循环不同目标参数的影响[J].化工进展,2015,34(11):3852-3858.LI Zishen,LI Weiyi,MENG Jinying,et al.Influences of evaporating pressure on different target parameters of Kalina cycle[J].Chemical Industry and Engineering Progress,2015,34(11):3852-3858.(in Chinese)
    [9]MODI A,HAGLIND F.Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications[J].Applied Thermal Engineering,2015,76:196-205.
    [10]岳秀艳,韩吉田,于泽庭,等.冷前回热式Kalina循环系统的(KCS)34g热力学分析[J].制冷与空调,2014,14(8):50-53.YUE Xiuyan,HAN Jitian,YU Zeting,et al.Thermodynamic analysis of regeneration-before-condensation type KCS34g[J].Refrigeration and Air-conditioning,2014,14(8):50-53.(in Chinese)
    [11]岳秀艳,韩吉田,于泽庭,等.新Kalina循环系统(KCS)34的热力学分析[J].发电技术,2014,35(157):9-13.YUE Xiuyan,HAN Jitian,YU Zeting,et al.Thermodynamic analysis of new Kalina cyde system(KCS)34[J].Refrigeration Air Conditioning &Electric Power Machinery,2014,35(157):9-13.(in Chinese)
    [12]胡冰,骆超,马伟斌.简化Kalina循环系统的热力学分析[J].农业机械学报,2014,45(4):214-219.HU Bing,LUO Chao,MA Weibin.Thermodynamic analysis of simplified Kalina cycle system[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(4):214-219.(in Chinese)
    [13]LOLOS P A,ROGDAKIS E D.A Kalina power cycle driven by renewable energy sources[J].Energy,2009,34(4):457-464.
    [14]USVIKA R,RIFALDI M,NOOR A,et al.Energy and exergy analysis of kalina cycle system(KCS)34with mass fraction ammonia-water mixture variation[J].Journal of Mechanical Science and Technology,2009,23(7):1871-1876.
    [15]ZARE V,MAHMOUDI S M S,YARI M,et al.On the exergoeconomic assessment of employing Kalina cycle for GT-MHR waste heat utilization[J].Energy Conversion and Management,2015,90:364-374.
    [16]FALLAH M,MAHMOUDI S M S,YARI M,et al.Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system[J].Energy Conversion and Management,2016,108:190-201.
    [17]马思骏,敬旭业,李逍霄,等.氨-水混合工质Rankine循环与Kalina循环的热力学分析与比较[J].中国电机工程学报,2014,34(2):288-294.MA Sijun,JING Xuye,LI Xiaoxiao,et al.Thermodynamic analysis and comparison between Rankine and Kalina cycles with ammonia-water mixture working fluids[J].Proceedings of the CSEE,2014,34(2):288-294.(in Chinese)
    [18]CHEN Y,GUO Z,WU J,et al.Energy and exergy analysis of integrated system of ammonia-water KalinaRankine cycle[J].Energy,2015,90:2028-2037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700