用户名: 密码: 验证码:
Resin Matrix Brake Materials Reinforced by Nano-Al_2O_3 for Mining Equipment
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Resin Matrix Brake Materials Reinforced by Nano-Al_2O_3 for Mining Equipment
  • 作者:崔功军 ; HAN ; Junrui
  • 英文作者:CUI Gongjun;HAN Junrui;College of Mechanical Engineering, Taiyuan University of Technology;
  • 英文关键词:composite;;brakes;;friction;;wear
  • 中文刊名:WLGY
  • 英文刊名:武汉理工大学学报(材料科学版)(英文版)
  • 机构:College of Mechanical Engineering, Taiyuan University of Technology;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Wuhan University of Technology(Materials Science)
  • 年:2019
  • 期:v.34;No.147
  • 基金:Funded by the National Natural Science Foundation of China(No.51405329);; the China Postdoctoral Science Foundation(No.2015M570239)
  • 语种:英文;
  • 页:WLGY201901013
  • 页数:7
  • CN:01
  • ISSN:42-1680/TB
  • 分类号:79-85
摘要
To verify the effect of Al_2O_3 particle content and size as an abrasive on resin matrix friction materials for mining equipment, the tribological performance of friction materials was studied by using a blockon-ring tribotester over a wide range of applied load and sliding speed. The testing conditions simulated brake conditions of mining equipment. The antiwear property of nano-Al_2O_3 was superior to that of micro-Al_2O_3 for friction materials. The friction coefficients of specimens increased with the increase of nano-Al_2O_3 content. The wear rates decreased with increasing nano-Al_2O_3 content. The wear rates of specimens containing nano-Al_2O_3 was about 2-8 times lower than that of specimen with micro-Al2O3. The specimen with 10.5 vol% nano-Al_2O_3 showed the best tribological properties. The wear mechanism of specimens with nano-Al_2O_3 was abrasive wear and plastic deformation.
        To verify the effect of Al_2O_3 particle content and size as an abrasive on resin matrix friction materials for mining equipment, the tribological performance of friction materials was studied by using a blockon-ring tribotester over a wide range of applied load and sliding speed. The testing conditions simulated brake conditions of mining equipment. The antiwear property of nano-Al_2O_3 was superior to that of micro-Al_2O_3 for friction materials. The friction coefficients of specimens increased with the increase of nano-Al_2O_3 content. The wear rates decreased with increasing nano-Al_2O_3 content. The wear rates of specimens containing nano-Al_2O_3 was about 2-8 times lower than that of specimen with micro-Al2O3. The specimen with 10.5 vol% nano-Al_2O_3 showed the best tribological properties. The wear mechanism of specimens with nano-Al_2O_3 was abrasive wear and plastic deformation.
引文
[1]GyimahGK,HuangP,ChenD.DrySliding WearStudiesofCopper-BasedPowderMetallurgyBrakeMaterials[J].J.Tribol.,2014,136(4):041 601
    [2]Dadkar N, Tomar B S, Satapathy B K. Evaluation of Flyash-Filled and Aramid Fibre Reinforced Hybrid Polymer Matrix Composites(PMC)for Friction Braking Applications[J]. Mater. Des., 2009, 30(10):4 369-4 376
    [3]Fei J, Li H J, Qi L H, et al. Carbon-Fiber Reinforced Paper-Based Friction Material:Study on Friction Stability as a Function of Operating Variables[J]. J. Tribol., 2008, 130(4):786-791
    [4]Lu Y. A Combinatorial Approach for Automotive Friction Materials:EffectsofIngredientsonFrictionPerformance[J].Polym.Compos.,2006, 23(5):591-598
    [5]Saffar A, Shojaei A. Effect of Rubber Component on the Performance of Brake Friction Materials[J]. Wear, 2011, 274(3):286-297
    [6]Gultekin D, Uysal M, Aslan S, et al. The Effects of Applied Load on theCoefficientofFrictioninCu-MMCBrakePad/Al-SiCpMMC Brake Disc System[J]. Wear, 2010, 270(1-2):73-82
    [7]Wu Y,JinH,Li Y,etal.Simulationof TemperatureDistributionin Disk Brake Considering a Real Brake Pad Wear[J]. Tribol. Lett., 2014,56(2):205-213
    [8]Boz M, Kurt A. The Effect of Al2O3 on the Friction Performance of Automotive Brake Friction Materials[J]. Tribol. Int., 2007, 40(7):1 161-1 169
    [9]Prabhu T R, Varma V K, Vedantam S. Effect of SiC Volume Fraction and Size on Dry Sliding Wear of Fe/SiC/Graphite Hybrid Composites for High Sliding Speed Applications[J]. Wear, 2014, 309(1-2):1-10
    [10]Matějka V, Lu Y, Fan Y, et al. Effects of Silicon Carbide in Semi-Metallic Brake Materials on Friction Performance and Friction Layer Formation[J]. Wear, 2008, 265(7-8):1 121-1 128
    [11]Kim S S, Hwang H J, Min W S, et al. Friction and Vibration of Automotive Brake Pads Containing Different Abrasive Particles[J]. Wear,2011, 271(7-8):1 194-1 202
    [12]Chan D, Stachowiak G W. Review of Automotive Brake Friction Materials[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2004, 218(9):953-966
    [13]Tomá?ek V, Krato?ováG, Yun R, et al. Effects of Alumina in Nonmetallic Brake Friction Materials on Friction Performance[J]. J. Mater.Sci., 2009, 44(1):266-273
    [14]Satapathy B K, Bijwe J. Wear Data Analysis of Friction Materials to Investigate the Simultaneous Influence of Operating Parameters and Compositions[J]. Wear, 2004, 256(7-8):797-804
    [15]Satapathy B K, Patnaik A, Dadkar N, et al. Influence of Vermiculite on Performance of Flyash-Based Fibre-Reinforced Hybrid Composites as Friction Materials[J]. Mater. Des., 2011, 32(8):4 354-4 361
    [16]Mustafa A, Abdollah M F B, Shuhimi F F, et al. Selection and Verification of Kenaf Fibres as an Alternative Friction Material Using Weighted Decision Matrix Method[J]. Mater. Des., 2015, 67:577-582
    [17]Ma Y,MartynkováGS,Valá?kováM,etal.EffectsofZrsio4in Non-MetallicBrakeFrictionMaterialsonFrictionPerformance[J].Tribol. Int., 2008, 41(3):166-174
    [18]Almaslow A, Ghazali M J, Talib R J, et al. Effects of Epoxidized Natural Rubber–Alumina Nanoparticles(Enran)Composites in Semi-Metallic Brake Friction Materials[J]. Wear, 2013, 302:1 392-1 396
    [19]Wang T M, Hou K H, Chang Y T, et al. The Preparation of Slag Fiber and Its Application in Heat Resistant Friction Composites[J]. Mater.Des., 2010, 31(9):4 296-4 301
    [20]Wang Z, Hou G, Yang Z, et al. Influence of Slag Weight Fraction on Mechanical, Thermaland TribologicalPropertiesofPolymerBased Friction Materials[J]. Mater. Des., 2016, 90:76-83
    [21]Fei J, Luo W, Huang J F, et al. Effect of Carbon Fiber Content on the Friction and Wear Performance of Paper-Based Friction Materials[J].Tribol. Int., 2015, 87:91-97
    [22]Chen B, Bi Q, Yang J, et al. Tribological Properties of Solid Lubricants(Graphite,H-Bn)forCu-BasedP/MFrictionComposites[J].Tribol.Int., 2008, 41(12):1 145-1 152
    [23]Hwang S J, Lee J H. Mechanochemical Synthesis of Cu–Al2o3, Nanocomposites[J]. Mater. Sci. Eng., A, 2005, 405(1-2):140-146
    [24]Zhang X, Li K Z, Li H J, et al. Tribological and Mechanical Properties of Glass Fiber Reinforced Paper-Based Composite Friction Material[J].Tribol. Int., 2014, 69:156-167
    [25]Cui G, Bi Q, Zhu S, et al. Synergistic Effect of Alumina and Graphite on Bronze Matrix Composites:Tribological Behaviors in Sea Water[J].Wear, 2013, 303(1-2):216-224
    [26]Cho K H, Jang H, Hong Y S, et al. The Size Effect of Zircon Particles ontheFrictionCharacteristicsofBrakeLiningMaterials[J].Wear,2008, 264(3-4):291-297
    [27]Jang J Y, Khonsari M M, Jang J Y. Thermal Characteristics of a Wet Clutch[J]. J. Tribol., 1999, 121(3):610-617
    [28]ErikssonM,BergmanF,JacobsonS.OntheNatureof Tribological Contact in Automotive Brakes[J]. Wear, 2002, 252(1-2):26-36
    [29]ZhangS, WangF.ComparisonofFrictionand WearPerformances of Brake Material Dry Sliding Against Two Aluminum Matrix Composites Reinforced with Different SiC Particles[J]. J. Mater. Process.Technol., 2007, 182(1-3):122-127
    [30]Cai P, Wang Y, Wang T, et al. Effect of Resins on Thermal, Mechanical and Tribological Properties of Friction Materials[J]. Tribol. Int., 2015,87(2):1-10
    [31]Archard J F. Contact and Rubbing of Flat Surfaces[J]. J. Appl. Phys.,1953, 24(8):981-988
    [32]Bettge D, Starcevic J. Topographic Properties of the Contact Zones of Wear Surfaces in Disc Brakes[J]. Wear, 2003, 254(3-4):195-202
    [33]Sasada T, Oike M, Emori N. The Effect of Abrasive Grain Size on the Transition between Abrasive and Adhesive Wear[J]. Wear, 1984, 97(3):291-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700