用户名: 密码: 验证码:
Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies
  • 作者:Laura ; Torrent ; Eva ; Marguí ; Ignasi ; Queralt ; Manuela ; Hidalgo ; Mònica ; Iglesias
  • 英文作者:Laura Torrent;Eva Marguí;Ignasi Queralt;Manuela Hidalgo;Mònica Iglesias;Department of Chemistry, University of Girona, C/M.Aurèlia Capmany;Institute of Environmental Assessment and Water Research (IDAEA-CSIC);
  • 英文关键词:Silver nanoparticles;;Agricultural soils;;Sorption kinetics;;Leaching tests;;Single-particle inductively coupled;;plasma mass spectrometry
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:Department of Chemistry, University of Girona, C/M.Aurèlia Capmany;Institute of Environmental Assessment and Water Research (IDAEA-CSIC);
  • 出版日期:2019-07-19
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.83
  • 基金:The Spanish Ministry of Economy and Competitiveness financed this work through the project CGL2013-48802-C3-2-R(Program 2014);; the Spanish Ministry of Economy and Competitiveness(Ref.BES-2014-070625);; the University of Girona for financial support(MPCUdG2016/103)
  • 语种:英文;
  • 页:HJKB201909019
  • 页数:12
  • CN:09
  • ISSN:11-2629/X
  • 分类号:207-218
摘要
The production of silver nanoparticles(AgNPs) has increased tremendously during recent years due to their antibacterial and physicochemical properties. As a consequence, these particles are released inevitably into the environment, with soil being the main sink of disposal. Soil interactions have an effect on AgNP mobility, transport and bioavailability. To understand AgNP adsorption processes, lab-controlled kinetic studies were performed.Batch tests performed with five different Mediterranean agricultural soils showed that cation exchange capacity and electrical conductivity are the main parameters controlling the adsorption processes. The adsorption kinetics of different sized(40, 75, 100 and 200 nm)and coated(citrate, polyvinylpyrrolidone and polyethyleneglycol(PEG)) AgNPs indicated that these nanoparticle properties have also an effect on the adsorption processes.To assess the mobility and bioavailability of AgNPs and to determine if their form is maintained during adsorption/desorption processes, loaded soils were submitted to leaching tests three weeks after batch adsorption studies. The DIN 38414-S4 extraction method indicated that AgNPs were strongly retained on soils, and single-particle inductively coupled plasma mass spectrometry confirmed that silver particles maintained their nanoform, except for 100 nm PEG-AgNPs and 40 nm citrate-coated AgNPs. The DTPA(diethylenetriaminepentaacetic acid) leaching test was more effective in extracting silver,but there was no presence of AgNPs in almost all of these leachates.
        The production of silver nanoparticles(AgNPs) has increased tremendously during recent years due to their antibacterial and physicochemical properties. As a consequence, these particles are released inevitably into the environment, with soil being the main sink of disposal. Soil interactions have an effect on AgNP mobility, transport and bioavailability. To understand AgNP adsorption processes, lab-controlled kinetic studies were performed.Batch tests performed with five different Mediterranean agricultural soils showed that cation exchange capacity and electrical conductivity are the main parameters controlling the adsorption processes. The adsorption kinetics of different sized(40, 75, 100 and 200 nm)and coated(citrate, polyvinylpyrrolidone and polyethyleneglycol(PEG)) AgNPs indicated that these nanoparticle properties have also an effect on the adsorption processes.To assess the mobility and bioavailability of AgNPs and to determine if their form is maintained during adsorption/desorption processes, loaded soils were submitted to leaching tests three weeks after batch adsorption studies. The DIN 38414-S4 extraction method indicated that AgNPs were strongly retained on soils, and single-particle inductively coupled plasma mass spectrometry confirmed that silver particles maintained their nanoform, except for 100 nm PEG-AgNPs and 40 nm citrate-coated AgNPs. The DTPA(diethylenetriaminepentaacetic acid) leaching test was more effective in extracting silver,but there was no presence of AgNPs in almost all of these leachates.
引文
Anderegg,G.,Arnaud-Neu,F.,Delgado,R.,Felcman,J.,Popov,K.,2005.Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications(IUPAC technical report).Pure Appl.Chem.77,1445-1495.
    Anjum,N.A.,Gill,S.S.,Duarte,A.C.,Pereira,E.,Ahmad,I.,2013.Silver nanoparticles in soil-plant systems.J.Nanopart.Res.15,1896-1922.
    Azimzada,A.,Tufenkji,N.,Wilkinson,K.J.,2017.Transformations of silver nanoparticles in wastewater effluents:links to Ag bioavailability.Environ.Sci.Nano 4,1339-1349.
    Barton,L.E.,Therezien,M.,Auffan,M.,Bottero,J.-Y.,Wiesner,M.R.,2014.Theory and methodology for determining nanoparticle affinity for heteroaggregation in environmental matrices using batch measurements.Environ.Eng.Sci.31,421-427.
    Christian,P.,Von der Kammer,F.,Baalousha,M.,Hofmann,Th.,2008.Nanoparticles:structure,properties,preparation and behaviour in environmental media.Ecotoxicology 17,326-343.
    Cornelis,G.,2015.Fate descriptors for engineered nanoparticles:the good,the bad,and the ugly.Environ.Sci.Nano 2,19-26.
    Cornelis,G.,Doolette,C.,Thomas,Madeleine,McLaughlin,M.J.,Kirby,J.K.,Beak,D.G.,Chittleborough,D.,2012.Retention and dissolution of engineered silver nanoparticles in natural soils.Soil Sci.Soc.Am.J.76,891-902.
    Cornelis,G.,Pang,L.,Doolette,C.,Kirby,J.K.,McLaughlin,M.J.,2013.Transport of silver nanoparticles in saturated columns of natural soils.Sci.Total Environ.463-464,120-130.
    Coutris,C.,Joner,E.J.,Oughton,D.H.,2012.Aging and soil organic matter content affect the fate of silver nanoparticles in soil.Sci.Total Environ.420,327-333.
    Dang,F.,Jiang,Y.,Li,M.,Zhong,H.,Peijnenburg,W.G.M.,Shi,W.,et al.,2018.Oral bioaccessibility of silver nanoparticles and ions in natural soils:importance of soil properties.Environ.Pollut.243,364-373.
    Darlington,T.K.,Neigh,A.M.,Spencer,M.T.,Nguyen,O.T.,Oldenburg,S.J.,2009.Nanoparticle characteristics affecting environmental fate and transport through soil.Environ.Toxicol.Chem.28,1191-1199.
    Dwivedi,A.D.,Dubey,S.P.,Sillanp??,M.,Kwon,Y.-N.,Lee,C.,Varma,R.S.,2015.Fate of engineered nanoparticles:implications in the environment.Coord.Chem.Rev.287,64-78.
    He,J.,Wang,D.,Zhou,D.,2019.Transport and retention of silver nanoparticles in soil:effects of input concentration,particle size and surface coating.Sci.Total Environ.648,102-108.
    Hoppe,M.,Mikutta,R.,Utermann,J.,Duijnisveld,W.,Guggenberger,G.,2014.Retention of sterically and electrosterically stabilized silver nanoparticles in soils.Environ.Sci.Technol.48,12628-12635.
    Hoppe,M.,Mikutta,R.,Utermann,J.,Duijnisveld,W.,Kaufhold,S.,Stange,C.F.,et al.,2015.Remobilization of sterically stabilized silver nanoparticles from farmland soils determined by column leaching.Eur.J.Soil Sci.66,898-909.
    Ketterings,Q.,Reid,S.,Rao,R.,2007.Cation exchange capacity(CEC).Agron.Fact Sheet Ser.22,1-2.
    Klitzke,S.,Metreveli,G.,Peters,A.,Schaumann,G.E.,Lang,F.,2015.The fate of silver nanoparticles in soil solutionsorption of solutes and aggregation.Sci.Total Environ.535,54-60.
    Koopmans,G.F.,Hiemstra,T.,Regelink,I.C.,Molleman,B.,Comans,R.N.J.,2015.Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution.J.Chromatogr.A 1392,100-109.
    Kosson,D.S.,Van der Sloot,H.A.,Eighmy,T.T.,1996.An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues.J.Hazard.Mater.47,43-75.
    Laborda,F.,Jiménez-Lamana,J.,Bolea,E.,Castillo,J.R.,2013.Critical considerations for the determination of nanoparticle number concentrations,size and number size distributions by single particle ICP-MS.J.Anal.At.Spectrom.28,1220-1232.
    Laborda,F.,Bolea,E.,Jiménez-Lamana,J.,2014.Single particle inductively coupled plasma mass spectrometry:a powerful tool for nanoanalysis.Anal.Chem.86,2270-2278.
    legislation,German Standard,1984.DIN 38414-S4:German Standards Methods for Examination of Water,Waste Water and Sludge;Group S(Sludge and Sediments);Determination of Leachability by Water(S4).Deutsches Institut für Normung E.V.(DIN),Berlin.
    Li,M.,Wang,P.,Dang,F.,Zhou,D.-M.,2017.The transformation and fate of silver nanoparticles in paddy soil:effects of soil organic matter and redox conditions.Environ.Sci.Nano.4,919-928.
    Liang,Y.,Bradford,S.A.,Simunek,J.,Vereecken,H.,Klumpp,E.,2013.Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors.Water Res.47,2572-2582.
    Lin,S.,Cheng,Y.,Liu,J.,Wiesner,M.R.,2012.Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces.Langmuir 28,4178-4186.
    Majedi,S.M.,Lee,H.K.,2016.Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment.TrAC Trends Anal.Chem.75,183-196.
    Marguí,E.,Salvadó,V.,Queralt,I.,Hidalgo,M.,2004.Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes.Anal.Chim.Acta 524,151-159.
    McGillicuddy,E.,Murray,I.,Kavanagh,S.,Morrison,L.,Fogarty,A.,Cormican,M.,et al.,2017.Silver nanoparticles in the environment:sources,detection and ecotoxicology.Sci.Total Environ.575,231-246.
    Mitrano,D.M.,Ranville,J.F.,Bednar,A.,Kazor,K.,Hering,A.S.,Higgins,C.P.,2014.Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory,natural,and processed waters using single particle ICP-MS(spICP-MS).Environ.Sci.Nano.1,248-259.
    Monta?o,M.D.,Badiei,H.R.,Bazargan,S.,Ranville,J.F.,2014.Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times.Environ.Sci.Nano.1,338-346.
    Nanocomposix.Standard Capping Agents,Available at:http://cdn.shopify.com/s/files/1/0257/8237/files/Standard_Capping_Agents.pdf,Accessed 6 February 2018.
    Navarro,D.A.,Kirby,J.K.,McLaughlin,M.J.,Waddington,L.,Kookana,R.S.,2014.Remobilisation of silver and silver sulphide nanoparticles in soils.Environ.Pollut.193,102-110.
    Pachapur,V.L.,Larios,A.D.,Cledón,M.,Brar,S.K.,Verma,M.,Surampalli,R.Y.,2016.Behavior and characterization of titanium dioxide and silver nanoparticles in soils.Sci.Total Environ.563-564,933-943.
    Peralta-Videa,J.R.,Zhao,L.,Lopez-Moreno,M.L.,de la Rosa,G.,Hong,J.,Gardea-Torresdey,J.L.,2011.Nanomaterials and the environment:a review for the biennium 2008-2010.J.Hazard.Mater.186,1-15.
    Plassard,F.,Winiarski,T.,Petit-Ramel,M.,2000.Retention and distribution of three heavy metals in a carbonated soil:comparison between batch and unsaturated column studies.J.Contam.Hydrol.42,99-111.
    Praetorius,A.,Tufenkji,N.,Goss,K.-U.,Scheringer,M.,Von der Kammer,F.,Elimelech,M.,2014.The road to nowhere:equilibrium partition coefficients for nanoparticles.Environ.Sci.Nano 1,317-323.
    Prathna,T.C.,Chandrasekaran,N.,Mukherjee,A.,2011.Studies on aggregation behaviour of silver nanoparticles in aqueous matrices:effect of surface functionalization and matrix composition.Colloids Surf.A:Physicochem.Eng.Asp.390,216-224.
    Pulit-Prociak,J.,Banach,M.,2016.Silver nanoparticles-a material of the future…?Open Chem.14,76-91.
    Quevauviller,P.,1998.Operationally defined extraction procedures for soil and sediment analysis I.Standardization.TrACTrends Anal.Chem.17,289-298.
    Rauret,G.,1998.Extraction procedures for the determination of heavy metals in contaminated soil and sediment.Talanta 46,449-455.
    Sajid,M.,Ilyas,M.,Basheer,C.,Tariq,M.,Daud,M.,Baig,N.,et al.,2015.Impact of nanoparticles on human and environment:review of toxicity factors,exposures,control strategies,and future prospects.Env.Sci.Pollut.Res.22,4122-4143.
    Schultz,C.,Powell,K.,Crossley,A.,Jurkschat,K.,Kille,P.,Morgan,A.J.,et al.,2015.Analytical approaches to support current understanding of exposure,uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms.Ecotoxicology 24,239-261.
    Sigfridsson,K.,Lundqvist,A.,Strimfors,M.,2013.Evaluation of exposure properties after injection of nanosuspensions and microsuspenions into the intraperitoneal space in rats.Drug Dev.Ind.Pharm.39,1832-1839.
    Simonet,B.M.,Valcárcel,M.,2009.Monitoring nanoparticles in the environment.Anal.Bioanal.Chem.393,17-21.
    Solé,A.,Plana,F.,Gallart,F.,Josa,R.,Pardini,G.,Aringhieri,R.,1992.How mudrock and soil physical properties influence badland formation at Vallcebre(pre-pyrenees,NE Spain).Catena 19,287-300.
    Tech Note:Zeta/pH Curves and Isoelectric Point Data for Standard Nanocomposix Silver Citrate and PVP Nanoparticle Dispersions.Available at:.https://cdn.shopify.com/s/files/1/0257/8237/files/Tech_Note_-_Zeta_and_pH_Curves_for_nanoComposix_Citrate_and_PVP_Capped_Silver_Nanoparticles.pdf,Accessed date:18 August 2017.
    Torrent,L.,Iglesias,M.,Hidalgo,M.,Marguí,E.,2016.Analytical capabilities of total reflection X-ray fluorescence spectrometry for silver nanoparticles determination in soil adsorption studies.Spectrochim.Acta Part B 126,71-78.
    Tourinho,P.S.,Van Gestel,C.A.M.,Lofts,S.,Svendsen,C.,Soares,A.M.V.M.,Loureiro,S.,2012.Metal-based nanoparticles in soil:fate,behaviour and effects on soil invertebrates.Environ.Toxicol.Chem.31,1679-1692.
    Treumann,S.,Torkzaban,S.,Bradford,S.A.,Visalakshan,R.M.,Page,D.,2014.An explanation for differences in the process of colloid adsorption in batch and column studies.J.Contam.Hydrol.164,219-229.
    Tuoriniemi,J.,Cornelis,G.,Hassell?v,M.,2012.Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles.Anal.Chem.84,3965-3972.
    Van Koetsem,F.,Geremew,T.T.,Wallaert,E.,Verbeken,K.,Van der Meeren,P.,Du Laing,G.,2015.Fate of engineered nanomaterials in surface water:factors affecting interactions of Ag and CeO2nanoparticles with(re)suspended sediments.Ecol.Eng.80,140-150.
    Yang,Y.,Long,C.-L.,Yang,Z.-G.,Li,H.-P.,Wang,Q.,2014.Characterization and determination of silver nanoparticle using single particle-inductively coupled plasma-mass spectrometry.Chin.J.Anal.Chem.42,1553-1560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700