用户名: 密码: 验证码:
河流静水滩区潜流带水交换空间分布模式研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Estimating spatial pattern of hyporheic water exchange in slack water pool
  • 作者:宋进喜 ; 程丹东 ; 张军龙 ; 张永强 ; 龙永清 ; 张妍 ; 申卫博
  • 英文作者:SONG Jinxi;CHENG DANDong;ZHANG Junlong;ZHANG Yongqiang;LONG Yongqing;ZHANG Yan;SHEN Weibo;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS & MWR;Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University;University of Chinese Academy of Sciences;College of Geography and Environment, Shandong Normal University;CSIRO Land and Water;
  • 英文关键词:hyporheic water exchange;;thermal method;;discharge;;recharge;;surface water-groundwater interactions
  • 中文刊名:ZGDE
  • 英文刊名:地理学报(英文版)
  • 机构:State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS & MWR;Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University;University of Chinese Academy of Sciences;College of Geography and Environment, Shandong Normal University;CSIRO Land and Water;
  • 出版日期:2019-01-31
  • 出版单位:Journal of Geographical Sciences
  • 年:2019
  • 期:v.29
  • 基金:National Natural Science Foundation of China,No.51679200;No.51379175;; Program for Key Science and Technology Innovation Team in Shaanxi Province,No.2014KCT-27;; The Hundred Talents Program of the Chinese Academy of Sciences,No.A315021406;; Specialized Research Fund for the Doctoral Program of Higher Education,No.20136101110001
  • 语种:英文;
  • 页:ZGDE201903005
  • 页数:12
  • CN:03
  • ISSN:11-4546/P
  • 分类号:59-70
摘要
Hyporheic zone(HZ) influences hydraulic and biogeochemical processes in and alongside streams, therefore, investigating the controlling geographic factors is beneficial for understanding the hydrological processes in HZ. Slack water pool (SWP) is an essential micro-topographic structure that has an impact on surface water and groundwater interactions in the HZ during and after high flows. However, only a few studies investigate HZ surface water and groundwater exchange in the SWP. This study used the thermal method to estimate the HZ water exchange in the SWP in a segment of the Weihe River in China during the winter season. The findings show that on the flow-direction parallel to the stream, river recharge dominates the HZ water exchange, while on the opposing flow-direction bank groundwater discharge dominates the water exchange. The water exchange in the opposing flow-direction bank is about 1.6 times of that in the flow-direction bank. The HZ water exchange is not only controlled by flow velocity but also the location and shape of the SWP. Great water exchange amount corresponds to the shape with more deformation. The maximum water exchange within the SWP is close to the river bank where the edge is relatively high. This study provides some guidelines for water resources management during flooding events.
        Hyporheic zone(HZ) influences hydraulic and biogeochemical processes in and alongside streams, therefore, investigating the controlling geographic factors is beneficial for understanding the hydrological processes in HZ. Slack water pool (SWP) is an essential micro-topographic structure that has an impact on surface water and groundwater interactions in the HZ during and after high flows. However, only a few studies investigate HZ surface water and groundwater exchange in the SWP. This study used the thermal method to estimate the HZ water exchange in the SWP in a segment of the Weihe River in China during the winter season. The findings show that on the flow-direction parallel to the stream, river recharge dominates the HZ water exchange, while on the opposing flow-direction bank groundwater discharge dominates the water exchange. The water exchange in the opposing flow-direction bank is about 1.6 times of that in the flow-direction bank. The HZ water exchange is not only controlled by flow velocity but also the location and shape of the SWP. Great water exchange amount corresponds to the shape with more deformation. The maximum water exchange within the SWP is close to the river bank where the edge is relatively high. This study provides some guidelines for water resources management during flooding events.
引文
Anibas C,Buis K,Verhoeven R et al.,2011.A simple thermal mapping method for seasonal spatial patterns of groundwater-surface water interaction.Journal of Hydrology,397(1):93-104.
    Anibas C,Fleckenstein J H,Volze N et al.,2009.Transient or steady-state?Using vertical temperature profiles to quantify groundwater-surface water exchange.Hydrological Processes,23(15):2165-2177.
    Baxter C,Hauer F R,Woessner W W,2003.Measuring groundwater-stream water exchange:New techniques for installing minipiezometers and estimating hydraulic conductivity.Transactions of the American Fisheries Society,132(3):493-502.
    Bellin A,Tonina D,Marzadri A,2015.Breakthrough curve moments scaling in hyporheic exchange.Water Resources Research,51(2):1112-1126.
    Boano F,Camporeale C,Revelli R et al.,2006.Sinuosity-driven hyporheic exchange in meandering rivers.Geophysical Research Letters,33(18):L18406.
    Boano F,Revelli R,Ridolfi L,2008.Reduction of the hyporheic zone volume due to the stream-aquifer interaction.Geophysical Research Letters,35(9):L09401.
    Boano F,Revelli R,Ridolfi L,2010.Effect of streamflow stochasticity on bedform-driven hyporheic exchange.Advances in Water Resources,33(11):1367-1374.
    Boulton A J,Datry T,Kasahara T et al.,2010.Ecology and management of the hyporheic zone:Stream-groundwater interactions of running waters and their floodplains.Journal of the North American Benthological Society,29(1):26-40.
    Cardenas M B,Wilson J,Zlotnik V A,2004.Impact of heterogeneity,bed forms,and stream curvature on subchannel hyporheic exchange.Water Resources Research,40(8):W08307.
    Caruso A,Ridolfi L,Boano F,2016.Impact of watershed topography on hyporheic exchange.Advances in Water Resources,94:400-411.
    Chen X,Dong W,Ou G et al.,2013.Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns.Hydrology and Earth System Sciences,17(7):2569-2579.
    Chen X B,Cardenas M B,Chen L,2015.Three-dimensional versus two-dimensional bed form-induced hyporheic exchange.Water Resources Research,51(4):2923-2936.
    Cheng D H,Chen X H,Huo A D et al.,2013.Influence of bedding orientation on the anisotropy of hydraulic conductivity in a well-sorted fluvial sediment.International Journal of Sediment Research,28(1):118-125.
    Conant B,2004.Delineating and quantifying ground water discharge zones using streambed temperatures.Groundwater,42(2):243-257.
    Conant Jr B,Cherry J A,Gillham R W,2004.A PCE groundwater plume discharging to a river:Influence of the streambed and near-river zone on contaminant distributions.Journal of Contaminant Hydrology,73(1):249-279.
    Darracq A,Destouni G,Persson K et al.,2009.Quantification of advective solute travel times and mass transport through hydrological catchments.Environmental Fluid Mechanics,10(1/2):103-120.
    Doble R,Brunner P,McCallum J et al.,2012.An analysis of river bank slope and unsaturated flow effects on bank storage.Groundwater,50(1):77-86.
    Dochartaigh B,MacDonald A,Archer N et al.,2012.Groundwater-surface water interaction in an upland hillslope-floodplain environment,Eddleston,Scotland,BHS 11th National Symposium,Hydrology for a Changing World,Dundee,Scotland,pp.2012.
    Dudley-Southern M,Binley A,2015.Temporal responses of groundwater-surface water exchange to successive storm events.Water Resources Research,51(2):1112-1126.
    Dunster K,2011.Dictionary of Natural Resource Management.UBC Press.
    Fischer H,Kloep F,Wilzcek S et al.,2005.A river's liver-microbial processes within the hyporheic zone of a large lowland river.Biogeochemistry,76(2):349-371.
    Fox A,Boano F,Arnon S,2014.Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms.Water Resources Research,50(3):1895-1907.
    Frei S,Lischeid G,Fleckenstein J H,2010.Effects of micro-topography on surface-subsurface exchange and runoff generation in a virtual riparian wetland:A modeling study.Advances in Water Resources,33(11):1388-1401.
    Gerecht K E,Cardenas M B,Guswa A J et al.,2011.Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river.Water Resources Research,47:W03524.
    Gualtieri C,Filizola Jr N,Oliveira M et al.,2017.A field study of the confluence between Negro and Solim?es rivers.Part 1:Hydrodynamics and sediment transport.Comptes Rendus Geoscience,350(1/2):31-42.
    Ianniruberto M,Trevethan M,Pinheiro A et al.,2017.A field study of the confluence between Negro and Solim?es rivers.Part 2:Bed morphology and stratigraphy.Comptes Rendus Geoscience,350(1/2):43-54.
    Irvine D J,Lautz L K,Briggs M A et al.,2015.Experimental evaluation of the applicability of phase,amplitude,and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2.Journal of Hydrology,531:728-737.
    Isiorho S A,Meyer J H,1999.The effects of bag type and meter size on seepage meter measurements.Groundwater,37(3):411-413.
    Jiang W,Song J,Zhang J et al.,2015.Spatial variability of streambed vertical hydraulic conductivity and its relation to distinctive stream morphologies in the Beiluo River,Shaanxi Province,China.Hydrogeology Journal,23(7):1617-1626.
    Josset L,Ginsbourger D,Lunati I,2015.Functional error modeling for uncertainty quantification in hydrogeology.Water Resources Research,51(2):1050-1068.
    Kalbus E,Reinstorf F,Schirmer M,2006.Measuring methods for groundwater-surface water interactions:A review.Hydrology and Earth System Sciences,10(6):873-887.
    Kasahara T,Wondzell S M,2003.Geomorphic controls on hyporheic exchange flow in mountain streams.Water Resources Research,39(1):SBH 3-1-SBH 3-14.
    Koch J,Nowak W,2015.Predicting DNAPL mass discharge and contaminated site longevity probabilities:Conceptual model and high-resolution stochastic simulation.Water Resources Research,51:806-831.
    Korbel K L,Hose G C,2015.Habitat,water quality,seasonality,or site?Identifying environmental correlates of the distribution of groundwater biota.Freshwater Science,34(1):329-343.
    Kuhlman KL,Malama B,Heath J E,2015.Multiporosity flow in fractured low-permeability rocks.Water Resources Research,51(2):848-860.
    Kumar K N,Entekhabi D,Molini A,2015.Hydrological extremes in hyperarid regions:A diagnostic characterization of intense precipitation over the Central Arabian Peninsula.Journal of Geophysical Research:Atmospheres,120:1637-1650.
    Larkin R G,Sharp J M,1992.On the relationship between river-basin geomorphology,aquifer hydraulics,and ground-water flow direction in alluvial aquifers.Geological Society of America Bulletin,104(12):1608-1620.
    Lautz L K,Siegel D I,2006.Modeling surface and ground water mixing in the hyporheic zone using MODFLOWand MT3D.Advances in Water Resources,29(11):1618-1633.
    Li Q,Song J X,Wei A et al.,2013.Changes in major factors affecting the ecosystem health of the Weihe River in Shaanxi Province,China.Frontiers of Environmental Science&Engineering,7(6):875-885.
    Malard F,Tockner K,Dole-Olivier M J et al.,2002.A landscape perspective of surface-subsurface hydrological exchanges in river corridors.Freshwater Biology,47(4):621-640.
    Malcolm I A,Soulsby C,Youngson A F,2006.High-frequency logging technologies reveal state-dependent hyporheic process dynamics:Implications for hydroecological studies.Hydrological Processes,20(3):615-622.
    Marzadri A,Tonina D,McKean J A et al.,2014.Multi-scale streambed topographic and discharge effects on hyporheic exchange at the stream network scale in confined streams.Journal of Hydrology,519:1997-2011.
    Mendoza-Lera C,Datry T,2017.Relating hydraulic conductivity and hyporheic zone biogeochemical processing to conserve and restore river ecosystem services.Science of the Total Environment,579:1815-1821.
    Min L L,Yu J J,Liu C M et al.,2013.The spatial variability of streambed vertical hydraulic conductivity in an intermittent river,northwestern China.Environmental Earth Sciences,69(3):873-883.
    Naiman R J,Latterell J J,2005.Principles for linking fish habitat to fisheries management and conservation.Journal of Fish Biology,67:166-185.
    Nazemi A,Wheater H S,2014.How can the uncertainty in the natural inflow regime propagate into the assessment of water resource systems?Advances in Water Resources,63:131-142.
    Peralta-Maraver I,Reiss J,Robertson A L,2018.Interplay of hydrology,community ecology and pollutant attenuation in the hyporheic zone.Science of the Total Environment,610/611:267-275.
    Pozdniakov S P,Wang P,Lekhov M V,2016.A semi-analytical generalized Hvorslev formula for estimating riverbed hydraulic conductivity with an open-ended standpipe permeameter.Journal of Hydrology,540:736-743.
    Prancevic J P,Lamb M P,2015.Particle friction angles in steep mountain channels.Journal of Geophysical Research:Earth Surface,120(2):242-259.
    Ramirez J A,Baird A J,Coulthard T J et al.,2015.Testing a simple model of gas bubble dynamics in porous media.Water Resources Research,51(2):1036-1049.
    Rau G C,Andersen M S,McCallum A M et al.,2014.Heat as a tracer to quantify water flow in near-surface sediments.Earth-Science Reviews,129:40-58.
    Rivett M O,Buss S R,Morgan P et al.,2008.Nitrate attenuation in groundwater:A review of biogeochemical controlling processes.Water Research,42(16):4215-4232.
    Sapriza-Azuri G,Jódar J,Navarro V et al.,2015.Impacts of rainfall spatial variability on hydrogeological response.Water Resources Research,51(2):1112-1126.
    Schmeeckle M W,Nelson J M,Shreve R L,2007.Forces on stationary particles in near-bed turbulent flows.Journal of Geophysical Research,112(F2):F02003.
    Schmidt C,Conant Jr B,Bayer-Raich M et al.,2007.Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures.Journal of Hydrology,347(3):292-307.
    Somogyvári M,Bayer P,Brauchler R,2016.Travel-time-based thermal tracer tomography.Hydrology and Earth System Sciences,20(5):1885-1901.
    Song J X,Zhang G T,Wang W Z et al.,2017.Variability in the vertical hyporheic water exchange effected by hydraulic conductivity and river morphology at a natural confluent meander bend.Hydrological Processes,31(19):3407-3420.
    Stegen J C,Johnson T,Fredrickson J K et al.,2018.Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology.Nat.Commun.,9(1):585.
    Storey R G,Howard K W F,Williams D D,2003.Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream:A three-dimensional groundwater flow model.Water Resources Research,39(2):1034.
    Stubbington R,2012.The hyporheic zone as an invertebrate refuge:A review of variability in space,time,taxa and behaviour.Marine and Freshwater Research,63(4):293-311.
    Suzuki S,1960.Percolation measurements based on heat flow through soil with special reference to paddy fields.Journal of Geophysical Research,65(9):2883-2885.
    Tonina D,Buffington J M,2007.Hyporheic exchange in gravel bed rivers with pool-riffle morphology:Laboratory experiments and three-dimensional modeling.Water Resources Research,43(1):W01421.
    Trauth N,Fleckenstein J H,2017.Single discharge events increase reactive efficiency of the hyporheic zone.Water Resources Research,53(1):779-798.
    Vogt T,Schirmer M,Cirpka O A,2012.Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution.Hydrology and Earth System Sciences,16(2):473-487.
    Wang P,Pozdniakov S P,Vasilevskiy P Y,2017.Estimating groundwater-ephemeral stream exchange in hyper-arid environments:Field experiments and numerical simulations.Journal of Hydrology,555:68-79.
    Wang W Z,Song J X,Zhang G T et al.,2018.The influence of hyporheic upwelling fluxes on inorganic nitrogen concentrations in the pore water of the Weihe River.Ecological Engineering,112:105-115.
    Westhoff M C,Gooseff M N,Bogaard T A et al.,2011.Quantifying hyporheic exchange at high spatial resolution using natural temperature variations along a first-order stream.Water Resources Research,47(10):W10508.
    Wroblicky G J,Campana M E,Valett H M et al.,1998.Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems.Water Resources Research,34(3):317-328.
    Zhang G T,Song J X,Wen M et al.,2017.Effect of bank curvatures on hyporheic water exchange at meter scale.Hydrology Research,48(2):355-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700