用户名: 密码: 验证码:
Inconel 718合金钨极惰性气体保护焊的热循环(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment of gas tungsten arc welding thermal cycles on Inconel 718 alloy
  • 作者:M.HERNáNDEZ ; R.R.AMBRIZ ; R.CORTéS ; C.M.GóMORA ; G.PLASCENCIA ; D.JARAMILLO
  • 英文作者:M.HERNáNDEZ;R.R.AMBRIZ;R.CORTéS;C.M.GóMORA;G.PLASCENCIA;D.JARAMILLO;Instituto Politécnico Nacional CIITEC-IPN, Cerrada de Cecati S/N Col.Sta.Catarina;Instituto de Investigación en Metalurgiay Materiales,Universidad Michoacana de San Nicolás de Hidalgo;
  • 关键词:Inconel ; 718合金 ; 钨极惰性气体保护焊(GTAW) ; 焊接热循环 ; 有限元方法 ; 热动源
  • 英文关键词:Inconel 718;;gas tungsten arc welding(GTAW);;weld thermal cycle;;finite element method;;heat moving source
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:Instituto Politécnico Nacional CIITEC-IPN, Cerrada de Cecati S/N Col.Sta.Catarina;Instituto de Investigación en Metalurgiay Materiales,Universidad Michoacana de San Nicolás de Hidalgo;
  • 出版日期:2019-03-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:CONACyT-México for the scholarship provided;; CONACyT (Project 736);; SIP-IPN are also acknowledged for funds given to conduct this research
  • 语种:英文;
  • 页:ZYSY201903014
  • 页数:9
  • CN:03
  • ISSN:43-1239/TG
  • 分类号:146-154
摘要
采用热动源模型和瞬态热分析相结合,并借助于有限元方法,确定在Inconel 718合金板上应用钨极惰性气体保护焊获得的焊接热循环和等温截面。Rosenthal厚板模型和有限元分析结果显示,焊接热循环与实验值较相近。与实验曲线相比,用双椭圆模型热分布数值模拟确定的等温截面其拟合效果优于高斯模型。为了分析不同冷却速率下熔融区和热影响区显微组织的转变,进行维氏显微硬度测量(由横截面硬度分布曲线和纵截面硬度分布映射图表示)。与基体材料的显微硬度(~350 HV_(0.2))相比,热影响区(~200 HV_(0.2))和熔融区(~240 HV_(0.2))的显微硬度降低,这是由于根据连续冷却转变曲线,γ″相(镍基体)的不均匀溶解过程生成Laves相、δ相和金属间化合物过渡相,使熔融区的硬度值降低。
        Heat moving source models along with transient heat analysis by finite element method were used to determine weld thermal cycles and isothermal sections obtained from the application of a gas tungsten arc welding beads on Inconel 718 plates. Analytical(Rosenthal's thick plate model) and finite element results show an acceptable approximation with the experimental weld thermal cycles. The isothermal sections determined by numerical simulation show a better approximation with the experimental welding profile for double-ellipse model heat distribution than Gauss model. To analyze the microstructural transformation produced by different cooling rates in the fusion and heat affected zones, Vickers microhardness measurements(profile and mapping representation) were conducted. A hardness decrement for the heat affected zone(~200 HV_(0.2)) and fusion zone(~240 HV_(0.2)) in comparison with base material(~350 HV_(0.2)) was observed. This behavior has been attributed to the heterogeneous solubilization process of the γ″ phase(nickel matrix), which, according to the continuous-cooling-transformation curve, produced the Laves phase, δ and MC transition phases, generating a loss in hardness close to the fusion zone.
引文
[1]CORTéS R,BARRAGáN E R,LóPEZ V H,AMBRIZ R R,JARAMILLO D.Mechanical properties of Inconel 718 performed by gas tungsten arc welding[J].International Journal of Advanced Manufacturing Technology,2017,94:3949-3961.
    [2]NAFFAKH H,ABOUTALEBI M R,SEYEDEIN S H,MAPELLI C.Microstructural,mechanical and weldability assessments of the dissimilar welds betweenγ′-andγ″-strengthened nickel-base superalloys[J].Materials Characterization,2013,8:41-49.
    [3]TAHERI N,NAFFAKH H,MALEY M.A new procedure for refurbishment of power plant Superalloy 617 by pulsed Nd:YAGlaser process[J].Optics&Laser Technology,2017,91:71-79.
    [4]DUPONT N J,LIPPOLD C J,KISER D S.Welding metallurgy and weldability of nickel based alloys[M].New Jersey:John Wiley&Sons,Inc.,2009.
    [5]RADAVICH J F.The physical metallurgy of cast and wrought alloy718[C]//Superalloys 718 Metallurgy and Applications(1989).Pennsylvania,USA,2004:229-240.
    [6]ROSENTHAL D.The theory of moving sources of heat and its application to metal treatments[J].Transactions of the American Society of Mechanical Engineers,1946,68:849-866.
    [7]MYERS P S,UYEHARA O A,BORMAN G L.Fundamentals of heat flow in welding[J].Welding Research Council Bulletin,1967,123:1-46.
    [8]FRIEDMAN E.Thermomechanical analysis of the welding process using the finite element method[J].Journal of Pressure Vessel Technology,1975,97:206-213.
    [9]SHARIR Y,GRILL A,PELLEG J.Computation of temperatures in thin tantalum sheet welding[J].Metallurgical Transactions B,1980,11:257-265.
    [10]KOU S.Simulation of heat flow during the welding of thin plates[J].Metallurgical Transactions A,1981,12:2025-2030.
    [11]KOU S,KANEVSKY T,FYFITCH S.Welding thin plates of aluminum alloys-A quantitative heat-flow analysis[J].Welding Journal,1982,61:175-181.
    [12]GOLDAK J,CHAKRAVARTI A,BIBBY M.A new finite element model for welding heat sources[J].Metallurgical Transactions B,1984,15:299-305.
    [13]PAPAZOGLOU V J,MASUBUCHI K.Numerical analysis of thermal stresses during welding including phase transformation effects[J].Journal of Pressure Vessel Technology,1982,104:198-203.
    [14]FREE J A,PORTER-GOFF R.Predicting residual stresses in multi-pass weldments with the finite element method[J].Computers and Structures,1989,32:365-378.
    [15]JOSEFSON B L.Prediction of residual stresses and distortions in welded structures[J].Journal of Offshore Mechanics and Arctic Engineering,1993,115:52-57.
    [16]BRICKSTAD B,JOSEFSON B L.A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes[J].International Journal of Pressure Vessels and Piping,1998,75:11-25.
    [17]ANCA A,CARDONA A,RISSO J,FACHINOTTI V D.Finite element modeling of welding processes[J].Applied Mathematical Modelling,2011,35:688-707.
    [18]GóMORA C M,AMBRIZ R R,CURIEL F F,JARAMILLO D.Heat distribution in welds of a 6061-T6 aluminum alloy obtained by modified indirect electric arc[J].Journal of Materials Processing Technology,2017,243:433-441.
    [19]EAGAR T W,TSAI N S.Temperature fields produced by traveling distributed heat sources[J].Welding Journal,1983,62:346-355.
    [20]CHO S,KIM J.Analysis of residual stress in carbon steel weldment incorporating phase transformations[J].Welding Journal,2002,7:212-216.
    [21]DENG D,MURAKAWA H,LIANG W.Numerical simulation of welding distortion in large structures[J].Computer Methods in Applied Mechanics and Engineering,2007,196:4613-4627.
    [22]RAYAMYAKI P,KARKHIN V A,KHOMICH P N.Determination of the main characteristics of the temperature field for the evaluation of the type of solidification of weld metal in fusion welding[J].Welding International,2007,21:600-604.
    [23]de FREITAS P R,de ARAúJO D B,da CUNHA A B.Study of the Gaussian distribution heat source model applied to numerical thermal simulations of tig welding processes[J].Ciencia y Engenharia/Science and Engineering Journal,2014,23:115-122.
    [24]GERY D,LONG H,MAROPOULOS P.Effects of welding speed,energy input and heat source distribution on temperature variations in butt joint welding[J].Journal of Materials Processing Technology,2005,167:393-401.
    [25]LUNDB?CK A,ALBERG H,HENRIKSON P.Simulation and validation of TIG-welding and post weld heat treatment of an Inconel718 plate[J].Mathematical Modelling of Weld Phenomena,2005,5:683-696.
    [26]KOU S.Welding metallurgy[M].2nd ed.New Jersey:John Wiley&Sons,Inc.,2003.
    [27]EASTERLING K.Introduction to the Physical Metallurgy of Welding[M].2nd ed.Great Britain:Elsevier Science,2013.
    [28]GRONG?.Metallurgical modelling of welding[M].2nd ed.Cambridge:Institute of Materials,1997.
    [29]MILLS K C.Recommended values of thermophysical properties for selected commercial alloys[M].Cambridge:Woodhead,2002.
    [30]DYE D,HUNZIKER O,ROBERTS S,REED R.Modeling of the mechanical effects induced by the tungsten inert-gas welding of the IN718 superalloy[J].Metallurgical and Materials Transactions A,2001,32:1713-1725.
    [31]DAVIS J R.Nickel,cobalt,and their alloys[M].The United States of America:ASM International,2000.
    [32]GEORGE F,VANDER VOORT G F.Atlas of time-temperature diagrams for nonferrous alloys[M].The United States of America:ASM International,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700