用户名: 密码: 验证码:
基于ScAlN/FeGa结构的磁电声表面波谐振器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Magnetoelectric Surface Acoustic Wave Resonator Based on ScAlN/FeGa Structure
  • 作者:姜建利 ; 杨雪梅 ; 刘婉 ; 白飞明
  • 英文作者:JIANG Jianli;YANG Xuemei;LIU Wan;BAI Feiming;State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China;
  • 关键词:FeGa合金衬底 ; 磁致伸缩效应 ; ScAlN薄膜 ; 磁电效应 ; 声表面波谐振器
  • 英文关键词:galfenol alloys substrate;;magnetostrictive effect;;ScAlN thin film;;magnetoelectric effect;;surface acoustic wave resonator
  • 中文刊名:YDSG
  • 英文刊名:Piezoelectrics & Acoustooptics
  • 机构:电子科技大学电子薄膜与集成器件国家重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:压电与声光
  • 年:2019
  • 期:v.41;No.244
  • 基金:国家自然科学基金资助项目(61871081)
  • 语种:中文;
  • 页:YDSG201901002
  • 页数:5
  • CN:01
  • ISSN:50-1091/TN
  • 分类号:10-14
摘要
该文研究基于磁致伸缩FeGa合金衬底的磁电声表面波(SAW)谐振器。首先,在FeGa磁致伸缩衬底上溅射沉积了ScAlN压电薄膜,完成了单端口声表面波谐振器的制备;其次,采用X线衍射仪(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)等手段对ScAlN薄膜进行结构分析;最后,采用矢量网络分析仪和微波探针台测试S参数和群时延。结果表明,ScAlN薄膜晶粒呈柱状生长且具有高度(002)取向,薄膜表面粗糙度在2.36nm左右;当ScAlN压电薄膜厚为0.7μm,波长为15.74μm时,SAW谐振器的谐振频率为218.75 MHz,相速度为3 443m/s,机电耦合系数为0.06%,与COMSOL仿真计算结果较吻合。
        A magnetoelectric surface acoustic wave(SAW)resonator based on FeGa alloy magnetostrictive substrate has been investigated in this paper.First,the ScAlN piezoelectric film was deposited by RF reactive magnetron sputtering on FeGa alloy magnetostrictive substrate and the one-port SAW resonator was fabricated.Then the structure analysis of ScAlN thin films was carried out by XRD,SEM and AFM.Finally,the S11 parameter and group delay were measured by the vector network analyzer and microwave probe station.The results show that the ScAlN thin film has a columnar growth and a high(002)orientation,and the film surface roughness(RMS)is about 2.36 nm.When the thickness of the ScAlN piezoelectric film is 0.7μm and the wavelength is 15.74μm,the resonant frequency of SAW resonance is 218.75 MHz,the phase velocity is 3 443m/s,and the electromechanical coupling is 0.06%,which is in good agreement with the COMSOL simulation results.
引文
[1]MARUYAMA T,SHIOTA Y,SUZUKIE Y,et al.Large voltage-induced magnetic anisotropy change in a few atomic layers of iron[J].Nature Nanotechnology,2009,4(3):158-161.
    [2]WANG Yao,HU Jiamian,NAN Cewen,et al.Multiferroic magnetoelectric composite nanostructures[J].NPG Asia Mater,2010,2(2):61-68.
    [3]MATSUKURA F,TOKURA Y,OHNO H.Control of magnetism by electric fields[J].Nature Nanotechnology,2015,10(3):209-220.
    [4]HU Jiamian,CHEN L Q,NAN Cewen.Multiferroic heterostructures integrating ferroelectric and magnetic materials[J].Advanced Materials,2016,28(1):15-39.
    [5]WANG Yaojin,GRAY D,BERRY D,et al.An extremely low equivalent magnetic noise magnetoelectric sensor[J].Advanced Materials,2011,23(35):4111-4114.
    [6]LAGE E,KIRCHHOF C,HRKAC V,et al.Exchange biasing of magnetoelectric composites[J].Nature Materials,2012,11(6):523-529.
    [7]HU Jiamian,LI Zheng,NAN Cewen,et al.High-density magnetoresistive random access memory operating at ultralow voltage at room temperature[J].Nature Communications,2011,2(1):553-560.
    [8]YANG Shengwei,PENG Renci,NAN Cewen,et al.Non-volatile 180°magnetization reversal by an electric field in multiferroic heterostructures[J].Advnaced Materials,2014,26(41):7091-7095.
    [9]LI Peisen,CHEN Aitian,HAN Xiufeng,et al.Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature[J].Advanced Materials,2014,26(25):4320-4325.
    [10]LIU Ming,OBI O,LOU Jing,et al.Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures[J].Adv Funct Mater,2009,19(11):1826-1831.
    [11]SUBRAMANYAM G,COLE M W,KALKUR T S,et al.Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components[J].J Appl Phys,2013,114(19):1301-1335.
    [12]NAN Cewen,BICHURIN M I,DONG Shuxiang,et al.Multiferroic magnetoelectric composites:historical perspective,status,and future directions[J].J Appl Phys,2008,103(3):031101.
    [13]SRINIVASAN G.Magnetoelectric composites[J].Annu Rev Mater Res,2010,40(1):153-178.
    [14]HUANG Liang,ZHANG Huaiwu,BAI Feiming,et al.Theoretical investigation of magnetoelectric surface acoustic wave characteristics of ZnO/Metglas layered composite[J].Aip Advances,2016,6(1):759-765.
    [15]LI Menghui,MATYUSHOV A,DONG Cunzheng,et al.Ultra-sensitive NEMS magnetoelectric sensor for picotesla DC magnetic field detection[J].Appl Phys Lett,2017,110(14):14351.
    [16]NAN Tianxiang,LIN Hwaider,SUN Nianxiang,et al.Acoustically actuated ultra-compact NEMS magnetoelectric antennas[J].Nature Communications,2017,8(1):296.
    [17]LUDWIG A,QUANDT E.Optimization of theΔEeffect in thin films and multilayers by magnetic field annealing[J].IEEE T Magn,2002,38(5):2829-2831.
    [18]CLARK A E,HATHAWAY K B,WUNFOHLE M,et al.Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys[J].J Appl Phys,2003,93(10):8621-8623.
    [19]DONG Shuxiang,ZHAI Junyi,BAI Feiming,et al.Magnetostrictive and magnetoelectric behavior of FeGa/Pb(Zr,Ti)O3laminates[J].J Appl Phys,2005,97(10):103902.
    [20]BAI Feiming,ZHANG Huaiwu,VIEHLAND D,et al.Magnetic force microscopy investigation of the static magnetic domain structure and domain rotation in Fexat.%Ga alloys[J].J Appl Phys,2009,95(15):152511.
    [21]AKIYAMA M,KAMOHARA T,KANO K,et al.Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering[J].Advanced Materials,2009,21(5):593-596.
    [22]HASHIMOTO K Y,SATO S,KANO K,et al.Highperformance surface acoustic wave resonators in the 1to 3GHz range using a ScAlN/6H-SiC structure[J].IEEE T Ultrason Ferr,2013,60(3):637-642.
    [23]ZHOU Changjian,YANG Yi,CAI Hualin,et al.Temperature-compensated high-frequency surface acoustic wave device[J].IEEE Electr Device L,2013,34(12):1572-1574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700