用户名: 密码: 验证码:
Fe-Ga合金换能器动态输出特性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Dynamic Output Characteristics of Fe-Ga Transducer
  • 作者:翁玲 ; 胡秀玉 ; 赵青 ; 孙英
  • 英文作者:WENG Ling;HU Xiuyu;ZHAO Qing;SUN Ying;Key Laboratory of Electro-Magnetic Field and Electrical Apparatus Reliability of Hebei Province,Hebei University of Technology;
  • 关键词:涡流损耗 ; Fe-Ga合金 ; 动态输出特性 ; COMSOL
  • 英文关键词:eddy loss;;Fe-Ga alloy;;dynamic output characteristics;;COMSOL
  • 中文刊名:CGJS
  • 英文刊名:Chinese Journal of Sensors and Actuators
  • 机构:河北工业大学电磁场与电器可靠性省部共建重点实验室;
  • 出版日期:2017-06-15
  • 出版单位:传感技术学报
  • 年:2017
  • 期:v.30
  • 基金:国家自然科学基金项目(51201055);; 河北省高等学校科学技术研究重点项目(ZD2015085);; 天津市高等学校科技发展基金项目(20140421);; 教育部留学归国人员启动基金和河北省引进留学人员项目(CG2013003001)
  • 语种:中文;
  • 页:CGJS201706006
  • 页数:5
  • CN:06
  • ISSN:32-1322/TN
  • 分类号:34-38
摘要
Fe-Ga合金具有应变大、响应时间短、能量密度高、磁机耦合系数高、驱动方式简单等优点。Fe-Ga合金换能器在高频驱动电流下会产生涡流损耗。驱动电流频率越大,集肤效应越明显,涡流损耗越大,磁场分布越不均匀,从而影响换能器的输出位移和输出功率。首先基于麦克斯韦方程组分析了不同频率下Fe-Ga棒内的磁场分布,结合结构动力学模块分析了Fe-Ga合金换能器棒内的磁场分布,进而得到Fe-Ga合金换能器的输出位移和频率的关系。结果表明,所使用的Fe-Ga合金换能器共振频率为700 Hz,最大输出位移为6μm。
        Fe-Ga alloy has the advantages of large strain,short response time,high energy density,high magnetic coupling coefficient and simple driving mode.Fe-Ga alloy transducer will generate eddy current losses with high frequency driving current.The larger driving current leads to more obvious skin effect,eddy current losses and inhomogeneous distribution of magnetic field,which will affect the output displacement and power of the transducer.The distribution of magnetic field in Fe-Ga rod under different frequencies is analyzed based on Maxwell's equations.The magnetic field distribution in Fe-Ga transducer and relationship between output displacement and frequency are studied based on structural dynamics model of Fe-Ga transducer.The results show that the resonance frequency of the Fe-Ga transducer used in this paper is 700 Hz and the maximum output displacement is 6μm.
引文
[1]Clark A E,Marilyn W F,Restorff J B,et al.Magnetostrictive Properties of Fe-Ga Alloys under Compressive Stress[J].Materials Transactions,2002,43(5):881-886.
    [2]Ling Weng,Qing Zhao,Ying Sun,et al.Dynamic Experiments of Strain and Magnetic Field for Galfenol Rod and Its Modeling[J].IEEE Transactions on Applied Superconductivity,2016,26(4):0600605.
    [3]孙英,靳辉,郑奕,等.磁致伸缩液位传感器检测信号影响因素分析及实验研究[J].传感技术学报,2015,28(11):1607-1613.
    [4]李英明,莫喜平,柴勇,等.铁镓复合棒换能器设计及非线性驱动研究[J].声学学报,2016,41(3):428-434.
    [5]陶孟仑,陈定方.超磁致伸缩材料动态涡流损耗模型及试验分析[J].机械工程学报,2012,48(13):146-151.
    [6]李淑英,王博文,周严,等.叠层复合磁致伸缩材料驱动器的输出位移特性[J].仪器仪表学报,2009,30(1):71-75.
    [7]Slaughter J.Investigation of Eddy Current Losses Inlaminated Terfenol-D Drivers[J].Journal of the Acoustical Society of America,2001,109(5):2435-2435.
    [8]贾傲,张天丽,孟皓,等.粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J].金属学报,2009,45(12):1473-1478.
    [9]Ren X,Corcolle R,Daniel L.A Homogenization Technique to Calculate Eddy Current Losses in Soft Magnetic Composites Using a Complex Magnetic Permeability[J].IEEE Transactions on Magnetics,2016,14(16):1-10.
    [10]Engdahl G.Handbook of Giant Magnetostrictive Materials[M].San Diego:Academic Press,2000:345-347.
    [11]白娟.稀土-铁材料磁致伸缩换能器的结构设计与特性分析[D].天津:河北工业大学,2014.
    [12]孙英,王博文,翁玲,等.磁致伸缩致动器的输出位移与输入电流频率关系实验研究[J].电工技术学报,2008,23(3):8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700