用户名: 密码: 验证码:
Self-powered lead-free quantum dot plasmonic phototransistor with multi-wavelength response
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Self-powered lead-free quantum dot plasmonic phototransistor with multi-wavelength response
  • 作者:YU ; YU ; YATING ; ZHANG ; LUFAN ; JIN ; ZHILIANG ; CHEN ; YIFAN ; LI ; QINGYAN ; LI ; MINGXUAN ; CAO ; YONGLI ; CHE ; HAITAO ; DAI ; JUNBO ; YANG ; JIANQUAN ; YAO
  • 英文作者:YU YU;YATING ZHANG;LUFAN JIN;ZHILIANG CHEN;YIFAN LI;QINGYAN LI;MINGXUAN CAO;YONGLI CHE;HAITAO DAI;JUNBO YANG;JIANQUAN YAO;Key Laboratory of Opto-Electronic Information Technology (Tianjin University),Ministry of Education,School of Precision Instruments and Opto-Electronics Engineering,Tianjin University;Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology,School of Science,Tianjin University;Center of Material Science,National University of Defense Technology;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Key Laboratory of Opto-Electronic Information Technology (Tianjin University),Ministry of Education,School of Precision Instruments and Opto-Electronics Engineering,Tianjin University;Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology,School of Science,Tianjin University;Center of Material Science,National University of Defense Technology;
  • 出版日期:2019-02-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Natural Science Foundation of China(NSFC)(61605141,61675147,61735010);; Basic Research Program of Shenzhen(JCYJ20170412154447469);; Open Fund of Key Laboratory of Opto-Electronic Information Technology,Ministry of Education(Tianjin University)
  • 语种:英文;
  • 页:GZXJ201902007
  • 页数:6
  • CN:02
  • ISSN:31-2126/O4
  • 分类号:52-57
摘要
Because they possess excellent visible light absorption properties, lead-free colloidal copper-based chalcogenide quantum dots(QDs) have emerged in photoelectronic fields. By means of localized surface plasmonic resonance(LSPR), the absorption properties of QDs can be enhanced. In this paper, we fabricate a lead-free CuInSe2 QD field effect phototransistor(FEpT) by utilizing the LSPR enhancement of Au nanoparticles(NPs). The plasmonic FEpT demonstrates responsivity up to 2.7 μA· W~(-1) and a specific detectivity of 7 × 10~3 Jones at zero bias under illumination by a 532 nm laser, values that are enhanced by approximately 200% more than devices without Au NPs. Particularly, the FEpT exhibits a multi-wavelength response, which is photoresponsive to 405, 532,and 808 nm irradiations, and presents stability and reproducibility in the progress of ON–OFF cycles.Furthermore, the enhancement induced by Au NP LSPR can be interpreted by finite-difference time domain simulations. The low-cost solution-based process and excellent device performance strongly underscore leadfree CuInSe2 QDs as a promising material for self-powered photoelectronic applications, which can be further enhanced by Au NP LSPR.
        Because they possess excellent visible light absorption properties, lead-free colloidal copper-based chalcogenide quantum dots(QDs) have emerged in photoelectronic fields. By means of localized surface plasmonic resonance(LSPR), the absorption properties of QDs can be enhanced. In this paper, we fabricate a lead-free CuInSe2 QD field effect phototransistor(FEpT) by utilizing the LSPR enhancement of Au nanoparticles(NPs). The plasmonic FEpT demonstrates responsivity up to 2.7 μA · W~(-1) and a specific detectivity of 7 × 10~3 Jones at zero bias under illumination by a 532 nm laser, values that are enhanced by approximately 200% more than devices without Au NPs. Particularly, the FEpT exhibits a multi-wavelength response, which is photoresponsive to 405, 532,and 808 nm irradiations, and presents stability and reproducibility in the progress of ON–OFF cycles.Furthermore, the enhancement induced by Au NP LSPR can be interpreted by finite-difference time domain simulations. The low-cost solution-based process and excellent device performance strongly underscore leadfree CuInSe2 QDs as a promising material for self-powered photoelectronic applications, which can be further enhanced by Au NP LSPR.
引文
1.J.Feng,M.Graf,K.Liu,D.Ovchinnikov,D.Dumcenco,M.Heiranian,V.Nandigana,N.R.Aluru,A.Kis,and A.Radenovic,“Single-layer MoS2nanopores as nanopower generators,”Nature 536,197-200(2016).
    2.S.Xu,Y.Qin,C.Xu,Y.Wei,R.Yang,and Z.L.Wang,“Self-powered nanowire devices,”Nat.Nanotechnol.5,366-373(2010).
    3.F.Zhang,Y.Zang,D.Huang,C.A.Di,and D.Zhu,“Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials,”Nat.Commun.6,8356(2015).
    4.Z.Wang,R.Yu,C.Pan,Z.Li,J.Yang,F.Yi,and Z.L.Wang,“Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing,”Nat.Commun.6,8401(2015).
    5.S.F.Leung,K.T.Ho,P.K.Kung,V.K.S.Hsiao,H.N.Alshareef,Z.L.Wang,and J.H.He,“A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity,”Adv.Mater.30,1704611(2018).
    6.C.R.Kagan,E.Lifshitz,E.H.Sargent,and D.V.Talapin,“Building devices from colloidal quantum dots,”Science 353,aac5523(2016).
    7.X.Lan,O.Voznyy,A.Kiani,F.Pelayo,G.de Arquer,A.S.Abbas,G.-H.Kim,M.Liu,Z.Yang,G.Walters,J.Xu,M.Yuan,Z.Ning,F.Fan,P.Kanjanaboos,I.Kramer,D.Zhitomirsky,P.Lee,A.Perelgut,S.Hoogland,and E.H.Sargent,“Passivation using molecular halides increases quantum dot solar cell performance,”Adv.Mater.28,299-304(2016).
    8.Y.Kim,K.Bicanic,H.Tan,O.Ouellette,B.R.Sutherland,F.P.Garcia de Arquer,J.W.Jo,M.Liu,B.Sun,M.Liu,S.Hoogland,and E.H.Sargent,“Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells,”Nano Lett.17,2349-2353(2017).
    9.A.H.Ip,S.M.Thon,S.Hoogland,O.Voznyy,D.Zhitomirsky,R.Debnath,L.Levina,L.R.Rollny,G.H.Carey,A.Fischer,K.W.Kemp,I.J.Kramer,Z.J.Ning,A.J.Labelle,K.W.Chou,A.Amassian,and E.H.Sargent,“Hybrid passivated colloidal quantum dot solids,”Nat.Nanotechnol.7,577-582(2012).
    10.F.Fan,O.Voznyy,R.P.Sabatini,K.T.Bicanic,M.M.Adachi,J.R.McBride,K.R.Reid,Y.S.Park,X.Li,A.Jain,R.Quintero-Bermudez,M.Saravanapavanantham,M.Liu,M.Korkusinski,P.Hawrylak,V.I.Klimov,S.J.Rosenthal,S.Hoogland,and E.H.Sargent,“Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,”Nature 544,75-79(2017).
    11.Z.Yang,O.Voznyy,G.Walters,J.Z.Fan,M.Liu,S.Kinge,S.Hoogland,and E.H.Sargent,“Quantum dots in two-dimensional perovskite matrices for efficient near-infrared light emission,”ACSPhoton.4,830-836(2017).
    12.T.Rauch,M.Boberl,S.F.Tedde,J.Furst,M.V.Kovalenko,G.N.Hesser,U.Lemmer,W.Heiss,and O.Hayden,“Near-infrared imaging with quantum-dot-sensitized organic photodiodes,”Nat.Photonics 3,332-336(2009).
    13.D.Y.Zhang,L.Gan,Y.Cao,Q.Wang,L.M.Qi,and X.F.Guo,“Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor,”Adv.Mater.24,2715-2720(2012).
    14.E.Lhuillier,M.Scarafagio,P.Hease,B.Nadal,H.Aubin,X.Z.Xu,N.Lequeux,G.Patriarche,S.Ithurria,and B.Dubertret,“Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz,”Nano Lett.16,1282-1286(2016).
    15.S.A.Mc Donald,G.Konstantatos,S.G.Zhang,P.W.Cyr,E.J.D.Klem,L.Levina,and E.H.Sargent,“Solution-processed Pb S quantum dot infrared photodetectors and photovoltaics,”Nat.Mater.4,138-142(2005).
    16.G.Konstantatos and E.H.Sargent,“Nanostructured materials for photon detection,”Nat.Nanotechnol.5,391-400(2010).
    17.M.G.Panthani,V.Akhavan,B.Goodfellow,J.P.Schmidtke,L.Dunn,A.Dodabalapur,P.F.Barbara,and B.A.Korgel,“Synthesis of CuInS2,CuInSe2,and Cu(InxGa1-x)Se2(CIGS)nanocrystal‘inks’for printable photovoltaics,”J.Am.Chem.Soc.130,16770-16777(2008).
    18.V.A.Akhavan,B.W.Goodfellow,M.G.Panthani,D.K.Reid,D.J.Hellebusch,T.Adachi,and B.A.Korgel,“Spray-deposited CuInSe2nanocrystal photovoltaics,”Energy Environ.Sci.3,1600-1606(2010).
    19.V.A.Akhavan,M.G.Panthani,B.W.Goodfellow,D.K.Reid,and B.A.Korgel,“Thickness-limited performance of CuInSe2nanocrystal photovoltaic devices,”Opt.Express 18,A411-A420(2010).
    20.C.J.Stolle,M.G.Panthani,T.B.Harvey,V.A.Akhavan,and B.A.Korgel,“Comparison of the photovoltaic response of oleylamine and inorganic ligand-capped CuInSe2nanocrystals,”ACS Appl.Mater.Interface 4,2757-2761(2012).
    21.M.G.Panthani,C.J.Stolle,D.K.Reid,D.J.Rhee,T.B.Harvey,V.A.Akhavan,Y.Yu,and B.A.Korgel,“Cu In Se2quantum dot solar cells with high open-circuit voltage,”J.Phys.Chem.Lett.4,2030-2034(2013).
    22.H.S.Choi,Y.Kim,J.C.Park,M.H.Oh,D.Y.Jeon,and Y.S.Nam,“Highly luminescent,off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging,”RSC Adv.5,43449-43455(2015).
    23.W.Yang,W.Guo,X.Gong,B.Zhang,S.Wang,N.Chen,W.Yang,Y.Tu,X.Fang,and J.Chang,“Facile synthesis of Gd-Cu-In-S/ZnSbimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging,”ACS Appl.Mater.Interface 7,18759-18768(2015).
    24.V.G.Demillo,M.Liao,X.Zhu,D.Redelman,N.G.Publicover,and K.W.Hunter,Jr.,“Fabrication of MnFe2O4-CuInS2/ZnS magnetofluorescent nanocomposites and their characterization,”Colloids Surf.A464,134-142(2015).
    25.H.Liu,C.Gu,W.Xiong,and M.Zhang,“A sensitive hydrogen peroxide biosensor using ultra-small CuInS2nanocrystals as peroxidase mimics,”Sens.Actuators B Chem.209,670-676(2015).
    26.C.Dong,Z.Liu,L.Zhang,W.Guo,X.Li,J.Liu,H.Wang,and J.Chang,“pHe-induced charge-reversible NIR fluorescence nanoprobe for tumor-specific imaging,”ACS Appl.Mater.Interface 7,7566-7575(2015).
    27.K.H.Lee,J.H.Kim,H.S.Jang,Y.R.Do,and H.Yang,“Quantumdot-based white lighting planar source through downconversion by blue electroluminescence,”Opt.Lett.39,1208-1211(2014).
    28.X.Yuan,R.Ma,W.Zhang,J.Hua,X.Meng,X.Zhong,J.Zhang,J.Zhao,and H.Li,“Dual emissive manganese and copper co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes,”ACS Appl.Mater.Interface 7,8659-8666(2015).
    29.W.Liu,Y.Zhang,D.Wang,T.Zhang,Y.Feng,W.Gao,J.Yin,Y.Wang,A.P.Riley,M.Z.Hu,W.W.Yu,and C.Ruan,“ZnCuInS/ZnSe/ZnS quantum dot-based downconversion light-emitting diodes and their thermal effect,”J.Nanomater.16,298614(2015).
    30.T.-L.Li,C.-D.Cai,T.-F.Yeh,and H.Teng,“Capped CuInS2quantum dots for H2evolution from water under visible light illumination,”J.Alloys Compd.550,326-330(2013).
    31.F.E.Osterloh,“Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting,”Chem.Soc.Rev.42,2294-2320(2013).
    32.F.Liu,J.Zhu,Y.Xu,L.Zhou,and S.Dai,“Scalable noninjection phosphine-free synthesis and optical properties of tetragonal-phase CuInSe2quantum dots,”Nanoscale 8,10021-10025(2016).
    33.C.Coughlan,M.Ibanez,O.Dobrozhan,A.Singh,A.Cabot,and K.M.Ryan,“Compound copper chalcogenide nanocrystals,”Chem.Rev.117,5865-6109(2017).
    34.P.Berini,“Surface plasmon photodetectors and their applications,”Laser Photon.Rev.8,197-220(2014).
    35.A.Pescaglini and D.Iacopino,“Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing,”J.Mater.Chem.C 3,11785-11800(2015).
    36.J.-A.Huang and L.-B.Luo,“Low-dimensional plasmonic photodetectors:recent progress and future opportunities,”Adv.Opt.Mater.6,1701282(2018).
    37.C.C.Chang,Y.D.Sharma,Y.S.Kim,J.A.Bur,R.V.Shenoi,S.Krishna,D.Huang,and S.Y.Lin,“A surface plasmon enhanced infrared photodetector based on InAs quantum dots,”Nano Lett.10,1704-1709(2010).
    38.S.Butun,N.A.Cinel,and E.Ozbay,“LSPR enhanced MSM UVphotodetectors,”Nanotechnology 23,444010(2012).
    39.L.B.Luo,W.J.Xie,Y.F.Zou,Y.Q.Yu,F.X.Liang,Z.J.Huang,and K.Y.Zhou,“Surface plasmon propelled high-performance CdSe nanoribbons photodetector,”Opt.Express 23,12979-12988(2015).
    40.Y.Dong,Y.Gu,Y.Zou,J.Song,L.Xu,J.Li,J.Xue,X.Li,and H.Zeng,“Improving all-inorganic perovskite photodetectors by preferred orientation and plasmonic effect,”Small 12,5622-5632(2016).
    41.R.Guo,T.Shen,and J.Tian,“Broadband hybrid organic/CuInSe2quantum dot photodetectors,”J.Mater.Chem.C 6,2573-2579(2018).
    42.Y.Yu,Y.Zhang,Z.Zhang,H.Zhang,X.Song,M.Cao,Y.Che,H.Dai,J.Yang,J.Wang,H.Zhang,and J.Yao,“Broadband phototransistor based on CH3NH3PbI3perovskite and PbSe quantum dot heterojunction,”J.Phys.Chem.Lett.8,445-451(2017).
    43.F.Gong,W.Luo,J.Wang,P.Wang,H.Fang,D.Zheng,N.Guo,J.Wang,M.Luo,J.C.Ho,X.Chen,W.Lu,L.Liao,and W.Hu,“High-sensitivity floating-gate phototransistors based on WS2and MoS2,”Adv.Funct.Mater.26,6084-6090(2016).
    44.J.Huang,Y.Yuan,Y.Shao,and Y.Yan,“Understanding the physical properties of hybrid perovskites for photovoltaic applications,”Nat.Rev.Mater.2,17042(2017).
    45.F.Li,C.Ma,H.Wang,W.Hu,W.Yu,A.D.Sheikh,and T.Wu,“Ambipolar solution-processed hybrid perovskite phototransistors,”Nat.Commun.6,8238(2015).
    46.H.Fang and W.Hu,“Photogating in low dimensional photodetectors,”Adv.Sci.4,1700323(2017).
    47.D.Kufer and G.Konstantatos,“Photo-FETs:phototransistors enabled by 2D and 0D nanomaterials,”ACS Photon.3,2197-2210(2016).
    48.J.H.Li,L.Y.Niu,Z.J.Zheng,and F.Yan,“Photosensitive graphene transistors,”Adv.Mater.26,5239-5273(2014).
    49.Y.Yu,Y.Zhang,X.Song,H.Zhang,M.Cao,Y.Che,H.Dai,J.Yang,H.Zhang,and J.Yao,“PbS-decorated WS2phototransistors with fast response,”ACS Photon.4,950-956(2017).
    50.Y.Yu,Y.Zhang,X.Song,H.Zhang,M.Cao,Y.Che,H.Dai,J.Yang,H.Zhang,and J.Yao,“High performances for solution-processed0D-0D heterojunction phototransistors,”Adv.Opt.Mater.5,1700565(2017).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700