用户名: 密码: 验证码:
Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe
  • 作者:王慧慧 ; 张尊 ; 杨凯翼 ; 谭畅 ; 崔瑞林 ; 欧阳吉庭
  • 英文作者:Huihui WANG;Zun ZHANG;Kaiyi YANG;Chang TAN;Ruilin CUI;Jiting OUYANG;School of Physics, Beijing Institute of Technology;Shanxi Key Laboratory of Plasma Physics and Applied Technology, Xi'an Aerospace Propulsion Institute;
  • 英文关键词:helicon plasma;;local OES;;Langmuir RF-compensated probe;;mode transition;;axial profile
  • 中文刊名:DNZK
  • 英文刊名:等离子体科学和技术(英文版)
  • 机构:School of Physics, Beijing Institute of Technology;Shanxi Key Laboratory of Plasma Physics and Applied Technology, Xi'an Aerospace Propulsion Institute;
  • 出版日期:2019-07-15
  • 出版单位:Plasma Science and Technology
  • 年:2019
  • 期:v.21
  • 基金:supported by National Natural Science Foundation of China (Nos. 11475131, 11805011)
  • 语种:英文;
  • 页:DNZK201907011
  • 页数:6
  • CN:07
  • ISSN:34-1187/TL
  • 分类号:77-82
摘要
We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope(OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines(750 nm, 811 nm) is proportional to the plasma density determined by the Langmuir probe. The axial profile of helicon plasma depends on the discharge mode which changes with the RF power. Excited by helical antenna, the axial distribution of plasma density is similar to that of the external magnetic field in the capacitive coupled mode(E-mode). As the discharge mode changes into the inductively coupled mode(H-mode), the axial distribution of plasma density in the downstream can still be similar to that of the external magnetic field, but becomes more uniform in the upstream. When the discharge entered wave coupled mode(W-mode), the plasma becomes nearly uniform along the axis, showing a completely different profile from the magnetic field. The W-mode is expected to be a mixed pattern of helicon(H) and Trivelpiece-Gould(TG) waves.
        We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope(OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines(750 nm, 811 nm) is proportional to the plasma density determined by the Langmuir probe. The axial profile of helicon plasma depends on the discharge mode which changes with the RF power. Excited by helical antenna, the axial distribution of plasma density is similar to that of the external magnetic field in the capacitive coupled mode(E-mode). As the discharge mode changes into the inductively coupled mode(H-mode), the axial distribution of plasma density in the downstream can still be similar to that of the external magnetic field, but becomes more uniform in the upstream. When the discharge entered wave coupled mode(W-mode), the plasma becomes nearly uniform along the axis, showing a completely different profile from the magnetic field. The W-mode is expected to be a mixed pattern of helicon(H) and Trivelpiece-Gould(TG) waves.
引文
[1] Chen F F 2015 Plasma Sources Sci. Technol. 24 014001
    [2] Shinohara S et al 2009 Phys. Plasmas 16 057104
    [3] Takahashi K et al 2014 Plasma Sources Sci. Technol. 23 044004
    [4] Takahashi K, Komuro A and Ando A 2015 Plasma Sources Sci. Technol. 24 055004
    [5] Xia G Q et al 2015 Spacecraft Environ. Eng. 32 1(in Chinese)
    [6] Wang S J et al 2007 J. Korean Phys. Soc. 51 989
    [7] Wang Y et al 2015 Phys. Plasmas 22 093507
    [8] Barada K K et al 2013 Phys. Plasmas 20 012123
    [9] Sato G, Oohara W and Hatakeyama R 2007 Plasma Sources Sci. Technol. 16 734
    [10] Chen F F 2003 Phys. Plasmas 10 2586
    [11] Siddiqui M U and Hershkowitz N 2014 Phys. Plasmas 21 020707
    [12] Zhao G et al 2018 Plasma Sci. Technol. 20 075402
    [13] Braginskii O V, Vasil’eva A N and Kovalev A S 2001 Plasma Phys. Rep. 27 699
    [14] Ma C et al 2015 IEEE Trans. Plasma Sci. 43 3702
    [15] Zhu X M et al 2006 Phys. Plasmas 13 123501
    [16] Zhao G et al 2017 Phys. Plasmas 24 123507
    [17] Shinohara S et al 2019 Plasma Phys. Controlied Fusion 61014017
    [18] Curreli D and Chen F F 2011 Phys. Plasmas 18 113501
    [19] Liu L et al 2009 Plasma Sci. Technol. 11 307
    [20] Czerwiec T and Graves D B 2004 J. Phys. D:Appl. Phys. 37 2827
    [21] Clarenbach B et al 2007 J. Phys. D:Appl. Phys. 40 5117
    [22] Degeling A W et al 1996 Phys. Plasmas 3 2788
    [23] Ellingboe A R et al 1996 Phys. Plasmas 3 2797
    [24] Isayama S et al 2016 Phys. Plasmas 23 063513
    [25] Shamrai K P and Taranov V B 1996 Plasma Sources Sci.Technol. 5 474
    [26] Djermanova N et al 2004 Vacuum 76 389
    [27] Afsharmanesh M and Habibi M 2017 Plasma Sci. Technol. 19105403
    [28] Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
    [29] Chen F F 1991 Plasma Phys. Controlled Fusion 33 339
    [30] Ganguli A, Sahu B B and Tarey R D 2007 Phys. Plasmas 14113503
    [31] Wang Y 2017 Plasma Sci. Technol. 19 024003
    [32] Celik M 2011 Spectrochim. Acta Part B At. Spectrosc. 66 149
    [33] Chen F F 1992 J. Vac. Sci. Technol. A 10 1389
    [34] Trivelpiece A W and Gould R W 1959 J. Appl. Phys. 30 1784
    [35] Arnush D 2000 Phys. Plasmas 7 3042
    [36] Ganguli A, Sahu B B and Tarey R D 2011 Plasma Sources Sci.Technol. 20 015021

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700