用户名: 密码: 验证码:
桦木单板/玻璃纤维复合材料的制备工艺优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of preparation process of birch veneer/glass fiber composite
  • 作者:林斌 ; 翟学勇 ; 李瑞 ; 孙立鹏 ; 张元婷 ; 尹玉雪 ; 刘镇波
  • 英文作者:Lin Bin;Zhai Xueyong;Li Rui;Sun Lipeng;Zhang Yuanting;Yin Yuxue;Liu Zhenbo;Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University;
  • 关键词:声学振动性能 ; 复合材料 ; 响应面分析法 ; 玻璃纤维
  • 英文关键词:acoustic vibration property;;composite material;;response surface methodology;;glass fiber
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:东北林业大学生物质材料科学与技术教育部重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:v.41
  • 基金:中央高校基本科研业务费专项(2572016EBJ1);; 国家自然科学基金项目(31670559)
  • 语种:中文;
  • 页:BJLY201904014
  • 页数:9
  • CN:04
  • ISSN:11-1932/S
  • 分类号:131-139
摘要
【目的】为了探究工艺因子对复合材料声学振动性能的影响,优化复合材料制备工艺条件参数以提高复合材料声学振动性能。【方法】按照单板层积材结构设计制备桦木单板/玻璃纤维复合材料。利用双通道快速傅里叶变换频谱分析仪(FFT)对复合材料的声学振动性能进行检测,以比动弹性模量(E/ρ)、弹性模量和剪切模量的比值(E/G)、声辐射品质常数(R)、损耗角正切(tanσ)、声速(v)归一后的综合得分值为响应指标,分析热压时间、热压压力、施胶量对复合材料的声学振动性能的影响。在单因素实验的基础上,利用响应面分析法建立工艺因子和响应值的二次回归模型,优化复合材料的制备工艺条件。【结果】单因素实验范围内,在热压时间10~25 min、热压压力0.6~1.3 MPa、施胶量140~180 g/m~2时,复合材料声学振动性能显著提升,说明实验的工艺因子对复合材料声学振动性能影响显著。利用Design-Expert软件对复合材料的声学振动性能测试结果进行二次多项式回归拟合,剔除对模型影响不显著的因素,建立了复合材料综合得分值的响应面模型。通过响应面模型优化后的最佳工艺条件为:热压时间24.5 min、热压压力1.3 MPa、施胶量180 g/m~2,此条件下复合材料的E/ρ为25.27 GPa,E/G为15.99,R为6.48 m~3/(Pa·s~3),tanσ为0.001 25,v为5 026.55 m/s,综合得分值可达到98.19。【结论】综合得分值的模型P <0.000 1,响应值的实测值和预测值之间的偏差均小于5%,说明响应值与回归模型均存在高度显著关系,也说明回归模型准确、可靠。
        [Objective] In order to investigate the influence of process factors on the acoustic vibration performance of composites, the process parameters of composite preparation were optimized to improve the acoustic vibration performance of composites. [Method] The test was designed according to the structure principle of laminated veneer lumber to prepare birch veneer/glass fiber composites. FFT was used to detect the acoustic vibration properties of composite materials. The comprehensive score after normalization of the specific dynamic elastic modulus(E/ρ), the ratio of elastic modulus and shear modulus(E/G), acoustic radiation damping(R), loss tangent(tanσ), and sound velocity(v) was used as the response indicators to analyze the influence of hot-press time, hot-press pressure and resin sizing amount on the acoustic vibration performance of composite materials. Based on the single factor experiment, the response surface methodlogy was used to establish the quadratic regression model of process factor and response value to optimize the preparation conditions of composite materials. [Result] Within the scope of the single factor experiment,when the hot-press time was 10-25 min, the pressure was 0.6-1.3 MPa, and the resin sizing amount was 140-180 g/m~2, the acoustic vibration performance of the composite materials was significantly improved.Those experiments used Design-Expert to perform quadratic polynomial regression fitting on the acoustic vibration performance test results of composite materials, eliminating the factors that have no significant influence on the model, and the response surface model of composite scores was established. The optimal process conditions optimized by the response surface model were hot-press time 24.5 min, hot-press pressure 1.3 MPa, resin sizing amount 180 g/cm~2. Under the conditions, the E/ρ of the composite reached 25.27 GPa,E/G was 15.99, R was 6.48 m~3/(Pa·s~3), tanσ was 0.001 25, v was 5 026.55 m/s, and the comprehensive score reached 98.19. [Conclusion] The P of the comprehensive score model was less than 0.000 1, the deviation between the measured value and the predicted value was less than 5%, indicating that the response value has a highly significant relationship with the regression model. It also shows that the regression model is accurate and reliable.
引文
[1]Heidelberg S B.Wood species for musical instruments[M].Berlin:Springer,2006.
    [2]刘建霞,王喜明,郝中保,等.干燥条件对木材干缩力的影响[J].东北林业大学学报,2015,43(8):75-77.Liu J X,Wang X M,Hao Z B,et al.Effect of drying conditions on wood shrinkage stress[J].Journal of Northeast Forestry University,2015,43(8):75-77.
    [3]刘镇波,刘一星.乐器共鸣板用木材声学振动性能改良研究现状及趋势[J].世界林业研究,2012,25(1):44-48.Liu Z B,Liu Y X.Research status and prospect of acoustic vibration properties modification of wood used for soundboard[J].World Forestry Research,2012,25(1):44-48.
    [4]Damodaran A,Lessaed L,Babu A S.An overview of fibrereinforced composites for musical instrument soundboards[J].Acoustics Australia,2015,43(1):117-122.
    [5]秦丽丽,苗媛媛,刘镇波.泡桐木材主要物理特征及化学组分对其声学振动性能的影响[J].森林工程,2017,33(4):34-39.Qin L L,Miao Y Y,Liu Z B.Influence of the main physical characteristics and components content of P.elongata on acoustic vibration performance[J].Forest Engineering,2017,33(4):34-39.
    [6]Endo K,Obataya E,Zeniya N,et al.Effects of heating humidity on the physical properties of hydrothermally treated spruce wood[J].Wood Science&Technology,2016,50(6):1161-1179.
    [7]Hossen M F,Hamdan S,Rahman M R.Investigation of the acoustic properties of chemically impregnated kayu malam wood used for musical instrument[J].Advances in Materials Science and Engineering,2018(4):1-6.
    [8]郭臻宇,连弘扬,李丽沙,等.炭化处理对杨木声学振动特性的影响[J].森林工程,2016,32(4):41-45.Guo Z Y,Lian H Y,Li L S,et al.The influence of carbonization on the acoustic vibration performance of poplars[J].Forest Engineering,2016,32(4):41-45.
    [9]吕晓东,苗媛媛,林斌,等.层数与碳纤维方向对木质-碳纤维复合材料声学振动性能的影响[J].林业工程学报,2018,3(4):96-101.LüX D,Miao Y Y,Lin B,et al.Study on acoustic vibration performance of wood-carbon fiber composite materials with different laying patterns[J].Journal of Forestry Engineering,2018,3(4):96-101.
    [10]李焕强.一种碳纤维吉他及碳纤维吉他的制作方法:CN106328102 A[P].2017-12-13.Li H Q.A carbon fiber guitar and carbon fiber guitar manufacturing method:CN 106328102 A[P].2017-12-13.
    [11]李哲锋,多化琼,青龙.电声乐器中木材声学振动性能对音响特性的影响[J].林业工程学报,2018,3(3):18-23.Li Z F,Duo H Q,Qing L.Effects of acoustic vibration properties of wood on acoustic characteristic in electronic musical instrument[J].Journal of Forestry Engineering,2018,3(3):18-23.
    [12]Damodaran A,Mansour H,Lessard L,et al.Application of composite materials to the chenda,an Indian percussion instrument[J].Applied Acoustics,2015,88:1-5.
    [13]Jalili M M,Mousavi S Y,Piryeshfar A S.Investigating the acoustical properties of carbon fiber-,glass fiber-,and hemp fiberreinforced polyester composites[J].Polymer Composites,2014,35(11):2103-2111.
    [14]何为,唐斌,薛卫东.优化试验设计方法及数据分析[M].北京:化学工业出版社,2012.He W,Tang B,Xue W D.Optimized test design method and data analysis[M].Beijing:Chemical Industry Press,2012.
    [15]Khuri A I.Response surface methodology[M]//Lovric M.International encyclopedia of statistical science.Berlin:Springer,2009:1171-1179.
    [16]徐正东,赵俊石,张双保.玻璃纤维增强结构用单板层积材热压工艺研究[J].林业机械与木工设备,2012,40(5):37-40.Xu Z D,Zhao J S,Zhang S B.Study of the hot pressing technology of LVL for fiberglass reinforced structures[J].Forestry Machinery&Woodworking Equipment,2012,40(5):37-40.
    [17]孙妍,尤立行,郁辰,等.木粉/废旧橡胶粉/HDPE三元复合材料热压法制备工艺[J].林业工程学报,2017,2(3):38-43.Sun Y,You L X,Yu C,et al.Manufacturing of wood/rubber/HDPE composites by hot pressing[J].Journal of Forestry Engineering,2017,2(3):38-43.
    [18]李坚,郑睿贤,金春德.无胶人造板研究与实践[M].北京:科学出版社,2010.Li J,Zheng R X,Jin C D.Research and practice of glueless woodbased panels[M].Beijing:Science Press,2010.
    [19]董宏敢,王传贵,刘盛全,等.榆木层积材制备工艺分析与优化[J].西北林学院学报,2017,32(6):245-249.Dong H G,Wang C G,Liu S Q,et al.Preparation and optimization of laminated elm lumber[J].Journal of Northwest Forestry University,2017,32(6):245-249.
    [20]左迎峰,吴义强,李新功,等.地板用双秸秆板芯层复合结构材工艺优化[J].中南林业科技大学学报,2016,36(3):101-105.Zuo Y F,Wu Y Q,Li X G,et al.Process optimization of double straw board core layer composite structure use for floor[J].Journal of Central South University of Forestry&Technology,2016,36(3):101-105.
    [21]刘镇波,沈隽,刘一星,等.实际尺寸乐器音板用云杉属木材的声学振动特性[J].林业科学,2007,43(8):100-105.Liu Z B,Shen J,Liu Y X,et al.Acoustic vibration property of full-size spruce wood soundboard of musical instruments[J].Scientia Silvae Sinicae,2007,43(8):100-105.
    [22]Ghani Z A,Yusoff M S,Zaman N Q,et al.Optimization of preparation conditions for activated carbon from banana pseudostem using response surface methodology on removal of color and COD from landfill leachate[J].Waste Management,2017,62:177-187.
    [23]周丽萍,王化,何丹娆,等.超声波辅助逆流提取蓓蕾蓝靛果花色苷工艺[J].北京林业大学学报,2017,39(9):119-125.Zhou L P,Wang H,He D Y,et al.Extraction technology of anthocyanin from Lonicera caerulea‘Beilei’fruit by ultrasonicassisted countercurrent extraction[J].Journal of Beijing Forestry University,2017,39(9):119-125.
    [24]Muralidhar R V,Chirumamila R R,Marchant R,et al.A response surface approach for the comparison of lipase production by Canida cylindracea using two different carbon sources[J].Biochemical Engineering Journal,2001,9(1):17-23.
    [25]胡建鹏,郭明辉.木纤维-木质素磺酸铵-聚乳酸复合材料的工艺优化与可靠性分析[J].北京林业大学学报,2015,37(1):115-121.Hu J P,Guo M H.Optimal process and reliability analysis of fiber-ammonium lignosulphonate-PLA wood composites[J].Journal of Beijing Forestry University,2015,37(1):115-121.
    [26]Li Q,Fu C.Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein[J].Food Chemistry,2004,92(4):701-706.
    [27]陈善敏,张静,蒋和体.响应面法优化甘薯废水混凝沉淀工艺[J].食品与发酵工业,2019,45(6):165-171.Chen S M,Zhang J,Jiang H T.Application of response surface methodology(RSM)to optimize coagulation-flocculation treatment of sweet potato wastewater[J].Food and Fermentation Industries,2019,45(6):165-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700