用户名: 密码: 验证码:
低氮掺杂对含氢类金刚石结构和力学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of low nitrogen doping on the microstructure and mechanical properties of hydrogenated diamond-like carbon films
  • 作者:杨满中 ; 彭继华 ; 韦宇冲
  • 英文作者:YANG Manzhong;PENG Jihua;WEI Yuchong;School of Materials Science and Engineering,South China University of Technology;
  • 关键词:掺氮类金刚石薄膜 ; PECVD ; 碳氮键 ; sp~3含量 ; 硬度 ; 残余应力
  • 英文关键词:nitrogen-doped diamond-like carbon films;;PECVD;;carbon-nitrogen bond(CN);;sp~3 content;;hardness;;residual stress
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:华南理工大学材料科学与工程学院;
  • 出版日期:2019-04-23
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:广州市科技项目(No.201807010091);; 广东省省级科技计划项目(No.2015B090923006)
  • 语种:中文;
  • 页:HEBX201905006
  • 页数:6
  • CN:05
  • ISSN:23-1235/T
  • 分类号:44-49
摘要
为探讨低氮掺杂对含氢类金刚石组织结构和力学性能的影响.采用非平衡磁控溅射和等离子增强化学气相沉积(PECVD)复合技术,在316不锈钢和硅片上制备碳化钨过渡层和不同掺氮量的含氢类金刚石薄膜(a-C:H(N)).通过拉曼光谱、X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描电镜(SEM)对薄膜组织结构进行表征,薄膜的硬度和残余应力采用微纳米力学综合测量系统和薄膜应力测量仪进行表征.结果表明随着氮掺杂,薄膜形成碳氮键(CN)且其主要以C=N键形式存在,C=N/CN的比值随着薄膜氮含量增加逐渐下降.同时当掺氮量从0增至0.12 at%时,薄膜I_D/I_G比值迅速下降,sp~2C=C/sp~3C-C比值由0.65降至0.563,而薄膜硬度基本不变,约为20.4 GPa,残余应力则由3.35 Gpa降至1.31 GPa;随着掺氮量进一步增加,sp~2C=C/sp~3C-C比值增加,薄膜硬度迅速下降,残余应力则缓慢降低.可知氮的掺杂对DLC薄膜结构的影响有临界值0.12 at%,当掺氮量低于该值时,氮掺杂促进sp~3杂化的形成,薄膜具有较高的sp~3杂化含量.而随着薄膜含氮量进一步增加,sp~3杂化含量下降.同时当低氮掺杂时,可获得具有较高硬度以及较低残余应力的薄膜.
        This paper aims to study the effect of low nitrogen doping on the microstructure and mechanical properties of hydrogenated diamond-like carbon films. By using unbalanced magnetron sputtering and plasma enhanced chemical vapor deposition(PECVD) composite technology, tungsten carbide transition layer and hydrogenated diamond-like carbon films with different nitrogen content(a-C:H(N)) were prepared on 316 stainless steel and silicon substrates. The microstructures of the films were characterized by Raman spectroscopy, X-ray diffraction analysis(XRD), X-ray photoelectron spectroscopy(XPS), and scanning electron microscope(SEM). The hardness and residual stress of the films were characterized by micro and nano mechanical comprehensive measurement system and film stress measuring instrument. Results show that with nitrogen doping, carbon-nitrogen bond(CN) was formed in the films and mainly existed in the form of C=N bond, and the ratio of C=N/CN decreased with the increase of nitrogen content. When the nitrogen content increased from 0 to 0.12 at%, the I_D/I_G ratio of the film decreased rapidly, the ratio of sp~2C=C/sp~3C-C decreased from 0.65 to 0.563, whereas the hardness of the films remained unchanged at about 20.4 GPa, and the residual stress decreased from 3.35 GPa to 1.31 GPa. With the increase of nitrogen content, the ratio of sp~2C=C/sp~3C-C increased, the hardness of the films decreased rapidly, and the residual stress decreased slowly. The effect of nitrogen doping on the microstructure of DLC films has a critical value of 0.12 at%. When the amount of nitrogen doping is lower than this value, it promotes the formation of sp~3 hybridization, and the film has high sp~3 hybridization, while the sp~3 hybridization of the films decreases with the increase of nitrogen, and the sp~3 hybridization decreases. The films with higher hardness and lower residual stress can be obtained with low nitrogen doping.
引文
[1]Das D, BANERJEE A. Anti-reflection coatings for silicon solar cells from hydrogenated diamond like carbon[J]. Applied Surface Science, 2015, 345: 204. DOI.org/10.1016/j.apsusc.2015.03.124
    [2]UCUN I, ASLANTAS K, BEDIR F. The performance of DLC-coated and uncoated ultra-fine carbide tools in micromilling of Inconel 718[J]. Precision Engineering, 2015, 41: 135. DOI:10.1016/j.precisioneng.2015.01.002
    [3]CHIU H C, PENG L Y, WANG H Y, et al. High thermal stability of GaN Schottky diode with diamond-like carbon(DLC) anode design[J]. Journal of the Electrochemical Society, 2016, 163(3): H155-H158. DOI:10.1149/2.0241603jes
    [4]JONGWANNASIRI C, LI X, WATANABE S. Improvement of thermal stability and tribological performance of diamond-like carbon composite thin films[J]. Materials Sciences and Applications, 2013, 4(10): 630. DOI:10.4236/msa.2013.410077
    [5]吴忠振, 田修波, 程思达, 等. 高结晶度CrN纳米粒子掺杂的DLC薄膜的显微结构及力学性能[J]. 金属学报, 2012, 48(3): 283WU Z Z, TIAN X B, CHENG S D, et al. Microstructure and mechanical properties of DLC films doped with high crystallinity CrN nanoparticles[J]. Acta Metallurgica Sinica, 2012, 48(3): 283. DOI:10.3724/SP.J.1037.2011.00512
    [6]薛群基, 王立平. 类金刚石碳基薄膜材料. 北京: 科学出版社, 2012: 112XUE Q J, WANG L P. Diamond-like carbon film materials[M]. Beijing: Science Press, 2012: 112
    [7]LIN J F, WAN Z C, WEI P J, et al. Effect of nitrogen content on mechanical properties and tribological behaviors of hydrogenated amorphous carbon films prepared by ion beam assisted chemical vapor deposition[J]. Thin Solid Films, 2004, 466(1): 137. DOI:org/10.1016/j.tsf.2004.02.098
    [8]JAN D J, AI C F, LEE C C. Deposition of nitrogen-containing diamond-like carbon films on acrylic substrates by an ion beam process[J]. Vacuum, 2004, 74(3-4): 531. DOI:org/10.1016/j.vacuum.2004.01.024
    [9]WEI B, ZHANG B, JOHNSON K E. Nitrogen-induced modifications in microstructure and wear durability of ultrathin amorphous-carbon films[J]. Journal of Applied Physics, 1998, 83(5): 2491. DOI:10.1063/1.367009
    [10]ZOU Y S, WANG Q M, DU H, et al. Structural characterization of nitrogen doped diamond-like carbon films deposited by arc ion plating[J]. Applied Surface Science, 2005, 241(3-4):295. DOI:10.1016/j.apsusc.2004.07.043
    [11]SUN L, LI H K, LIN G Q, et al. Influence of deposition parameters on the microstructure and properties of nitrogen-doped diamond like carbon films[J]. Journal of Vacuum Science & Technology A, 2010, 28(6): 1299. DOI:10.1116/1.3482010
    [12]TSUCHIYA M, MURAKAMI K, MAGARA K, et al. Structural and electrical properties and current-voltage characteristics of nitrogen-doped diamond-like carbon films on Si substrates by plasma-enhanced chemical vapor deposition[J]. Journal of Applied Physics, 2016, 55(6): 065502. DOI:10.7567/JJAP.55.065502
    [13]SHIRI S, ASHTIJOO P, ODESHI A, et al. Evaluation of Stoney equation for determining the internal stress of DLC thin films using an optical profiler[J]. Surface & Coatings Technology, 2016, 308. DOI:10.1016/j.surfcoat.2016.07.098
    [14]SETSUO N, TETSUO S, TSUTOMU S, et al. Optical and electrical properties of nitrogen-doped diamond-like carbon films prepared by a bipolar-type plasma-based ion implantation[J]. Japanese Journal of Applied Physics, 2012, 51(1). DOI:10.1143/JJAP.51.01AC04
    [15]HADDOCK D, PARKER T, SPINDLOE C, et al. Characterisation of diamond-like carbon (DLC) laser targets by Raman spectroscopy[C]. Journal of Physics: Conference Series, IOP Publishing, 2016:012007. DOI:10.1088/1742-6596/713/1/012007
    [16]FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B 2000, 61(20): 14095. DOI:10.1103/PhysRevB.61.14095
    [17]TAMOR M A, VASSELL W C. Raman “fingerprinting” of amorphous carbon films[J]. Journal of Applied Physics, 1994, 76(6): 3823. DOI:10.1063/1.357385
    [18]CASIRAGHI C, FERRARI A C, ROBERTSON J. Raman spectroscopy of hydrogenated amorphous carbons[J]. Physical Review B Condensed Matter, 2005, 72(8): 85401. DOI:10.1103/PhysRevB.72.085401
    [19]BHATTACHARYYA S, CARDINAUD C, TURBAN G. Spectroscopic determination of the structure of amorphous nitrogenated carbon films[J]. Journal of Applied Physics, 1998, 83(8): 4491. DOI:10.1063/1.367211
    [20]杨义勇, 彭志坚, 付志强, 等. 多组分缓冲层W梯度掺杂DLC复合薄膜研究[J]. 金属学报, 2010, 46: 34YaNG Y Y, PENG Z J, FU Z Q, et al. Study on W graded doping DLC composite films with multicomponent transition layer[J]. Acta Metallurgica Sinica, 2010(46): 34. DOI:org.cn/CN/Y2010/V46/I1/34
    [21]MANSOUR A, UGOLINI D. Photoelectron-spectroscopy study of amorphous a-CNx:H[J]. Physical Review B Condensed Matter, 1993, 47(16): 10201. DOI:10.1103/PhysRevB.47.10201 ·
    [22]SCHARF T W, OTT R D, YANG D, et al. Structural and tribological characterization of protective amorphous diamond-like carbon and amorphous CNx overcoats for next generation hard disks[J]. Journal of Applied Physics, 1999, 85(6): 3142. DOI:10.1063/1.369654
    [23]SEKER Z, OZDAMAR H, ESEN M, et al. The effect of nitrogen incorporation in DLC films deposited by ECR Microwave Plasma CVD[J]. Applied Surface Science, 2014, 314(10): 46. DOI:10.1016/j.apsusc.2014.06.137
    [24]SHENG R D, LI L J, SU D Y, et al. Effect of unbonded hydrogen on amorphous carbon film deposited by PECVD with annealing treatment[J]. Diamond & Related Materials, 2018, 81: 146. DOI:10.1016/j.diamond.2017.12.002
    [25]H?GSTR?M J, ANDERSSON M, JANSSON U, et al. On the evaluation of corrosion resistances of amorphous chromium-carbon thin-films[J]. Electrochimica Acta, 2014, 122: 224. DOI:10.1016/j.electacta.2013.11.130
    [26]BHATTACHARYYA S, HONG J, TURBAN G. Determination of the structure of amorphous nitrogenated carbon films by combined Raman and x-ray photoemission spectroscopy[J]. Journal of Applied Physics, 1998, 83(7): 3917. DOI:10.1063/1.367312
    [27]马一博, 陈牧, 颜悦, 等. 薄膜应力测量方法及影响因素研究进展[J]. 航空材料学报, 2018, 38(1): 17MA Y B, CHEN M, YAN Y, et al. Research progress of thin film stress measurement methods and influencing factors[J]. Journal of Aeronautical Materials, 2018, 38(1): 17. DOI:10.11868/j.issn.1005-5053.2017.000126
    [28]KHUN N W, LIU E, GUO H W. Cyclic voltammetric behavior of nitrogen-doped tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc[J]. Electroanalysis, 2010, 20(17): 1851. DOI:10.1002/elan.200804249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700