用户名: 密码: 验证码:
现代盐湖沉积与岩盐析出模拟的相似性及其对成盐模式的启示
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Similarity of Salt-Forming between Flume Experiment and Modern Salt Lake
  • 作者:禚喜准 ; 张林炎 ; 陈骁帅 ; 闫清涣 ; 崔建军 ; 杨雨
  • 英文作者:ZHUO XiZhun;ZHANG LinYan;CHEN XiaoShuai;YAN QingHuan;CUI JianJun;YANG Yu;Department of Geology,Liaoning Technical University;Institute of Geomechanics,Chinese Academy of Geological Sciences;
  • 关键词:岩盐 ; 水槽模拟 ; 类比分析 ; 现代沉积 ; 成盐模式
  • 英文关键词:rock salt;;flume simulation experiment;;analogy analysis;;modern sedimentation;;salt-forming model
  • 中文刊名:CJXB
  • 英文刊名:Acta Sedimentologica Sinica
  • 机构:辽宁工程技术大学地质系;中国地质科学院地质力学研究所;
  • 出版日期:2018-04-16 17:31
  • 出版单位:沉积学报
  • 年:2018
  • 期:v.36
  • 基金:国家自然科学基金项目(41402101);; 辽宁省教育厅一般项目(14-1167)~~
  • 语种:中文;
  • 页:CJXB201806005
  • 页数:12
  • CN:06
  • ISSN:62-1038/P
  • 分类号:64-75
摘要
盐类析出模拟实验有助于增进对成盐模式的理解,但运用正演模拟进行类比分析的前提是实验模型与盐湖原型的沉积机理具有相似性。基于现代盐湖的野外地质调查,对岩盐析出模型与现代盐湖在沉积物的结构、空间分布以及沉积机理的相似性等方面进行了对比分析。研究表明,深度较小的水槽,以空气—卤水界面析盐和蒸发泵成盐为主;而对于水深和规模较大的现代盐湖来说,上述两种成盐方式主要分布于湖盆边缘的浅水区,水深较大的斜坡带和洼陷带以卤水—湖底沉积物界面析盐为主,反映了水深较浅的水槽无法再现古代盐湖的湖盆底形和沉积物分布特征。现代沉积调查显示,在封闭的内陆盐湖盆地中,岩盐通常形成于湖退期—低位期,其沉积厚度从湖盆边缘向洼陷中心有逐渐增大的趋势,即岩盐的沉积中心和洼陷中心保持一致。岩盐的结构跟沉积环境密切相关,盆缘滨岸带的岩盐多为薄层状与砂岩共存,晶体粒度小;而洼陷带以粗粒结晶的盐岩为主,单层厚度大,常与暗色泥岩互层。岩盐沉积中心和洼陷中心关系的厘定,对于湖盆的古地貌恢复和沉积体的预测,具有重要的理论和现实意义。
        Salt precipitation simulation experiments help enhance our understanding of salt-forming models; however,the premise of using forward modeling is that the experimental model is similar to the sedimentary mechanism of the salt lake prototype. Based on the field geological survey of modern salt lakes,this paper makes an analogy analysis of salt precipitation models and modern salt lakes,in terms of sediment texture,spatial distribution characteristics,and similarity of sedimentation mechanism. The results show that it is mainly the air-brine interface salt and salt formation through evaporation in the smaller depth of the flume; and for the deeper water and large-scale modern salt lake,the two kinds of salt-forming methods are mainly distributed in the shallow waters of the lake basin. The slopes and depressions with larger water depth are mainly brine-lake sediments interfaced with salt precipitation,which reflect the shallow water of the flume cannot reproduce lake basin bottom and sediment distribution characteristics of the ancient salt lake. Modern sediments show that in the closed inland salt lake basin,the rock salt is mainly formed in the lake retreat period-low period,and its depositional thickness gradually increases from the edge of the lake basin to the depression center,i.e. the deposition center of the rock salt and the depression center are consistent. The texture of rock salt is closely related to the sedimentary environment. The rock salt in the edge of the basin mostly coexists with the sandstone,and the grain size is small,while the depression is mainly composed of coarse-grained salt rock,singlelayer thickness and is large,often with dark mudstone interbeds. The relationship between the center of the rock salt deposition and the center of the depression is of great theoretical and practical significance for the restoration of paleogeomorphology and sedimentary body of the lake basin.
引文
[1] Warren J K. Evaporites:A geological compendium[M]. 2nd ed.Switzerland:Springer,2016:1-47.
    [2]金强,黄醒汉.东濮凹陷早第三纪盐湖成因的探讨:一种深水成因模式[J].华东石油学院学报,1985,10(1):1-13.[Jin Qiang,Huang Xinghan. Studies on the origin of the Early Tertiary salt lake dongpu depression:A postulated deep water model[J]. Journal of the University of Petroleum,China,1985,10(1):1-13.]
    [3]高红灿,郑荣才,肖应凯,等.渤海湾盆地东濮凹陷古近系沙河街组盐岩成因:来自沉积学和地球化学的证据[J].石油学报,2015,36(1):19-32.[Gao Hongcan,Zheng Rongcai,Xiao Yingkai,et al. Origin of the salt rock of Paleogene Shahejie Formation in Dongpu sag,Bohai Bay Basin:Evidences from sedimentology and geochemistry[J]. Acta Petrolei Sinica,2015,36(1):19-32.]
    [4]袁静,赵澄林,张善文.东营凹陷沙四段盐湖的深水成因模式[J].沉积学报,2000,18(1):114-118.[Yuan Jing,Zhao Chenglin,Zhang Shanwen. Genetic model of the deep water salt lake of the Paleogene Sha-4 Member in Dongying sag[J]. Acta Sedimentologica Sinica,2000,18(1):114-118.]
    [5]王伟锋,张美.洪泽凹陷赵集次凹阜宁组四段盐岩深水再沉积成因探讨[J].沉积学报,2015,33(2):242-253.[Wang Weifeng,Zhang Mei. Study on deep water resedimented origin of saline sediments of E1f4in Zhaoji sag,Hongze depression,northern Jiangsu Basin[J]. Acta Sedimentologica Sinica,2015,33(2):242-253.]
    [6]苏惠,许化政,张金川,等.东濮凹陷沙三段盐岩成因[J].石油勘探与开发,2006,33(5):600-605.[Su Hui,Xu Huazheng,Zhang Jinchuan,et al. Origin of 3rdmember salt rock of Shahejie Formation in Dongpu sag[J]. Petroleum Exploration and Development,2006,33(5):600-605.]
    [7]冯阵东,吴伟,程秀申,等.食盐析出实验对盐湖盆地沉积研究的启示[J].沉积学报,2014,32(2):238-243.[Feng Zhendong,Wu Wei,Cheng Xiushen,et al. Enlightenment from salt precipitation experiment to the researching on saline lacustrine basin sedimentology[J]. Acta Sedimentologica Sinica,2014,32(2):238-243.]
    [8]彭君,冯阵东,国殿斌,等.再论东濮凹陷沙三段成盐模式[J].中国石油大学学报(自然科学版),2016,40(3):9-15.[Peng Jun,Feng Zhendong,Guo Dianbin,et al. Revisiting salt-forming models in the Third Member of Shahejie Formation in Dongpu depression[J]. Journal of China University of Petroleum,2016,40(3):9-15.]
    [9] Schmalz R F. Environment of marine evaporite deposition[J]. Miner Ind,1970,35(8):1-7.
    [10]卡尔·波普尔.猜想与反驳:科学知识的增长[M].傅季重,译.上海:上海译文出版社,1986:65-69.[Popper K R. Coniectures and refutations:The growth scientific knowledge[M]. Fu Jizhong,Trans. Shanghai:Shanghai Translation Publishing House,1986:65-69.]
    [11]江守一郎.模型试验的理论和应用[M].北京:科学出版社,1984:1-18.[Emori Ichirou. Theory and application of model test[M]. Beijing:Science Press,1984:1-18.]
    [12]佩蒂庄F J.沉积岩[M].李汉瑜,徐怀大,胡伯良,等译.北京:石油工业出版社,1981:461-464.[Pettijohn F J. Sedimentary rocks[M]. Li Hanyu,Xu Huaida,Hu Boliang,et al,Trans. Beijing:Petroleum Industry Press,1981:461-464.]
    [13]张彭熹.中国蒸发岩研究中几个值得重视的地质问题的讨论[J].沉积学报,1992,10(3):78-84.[Zhang Pengxi. Discussion on some geological problems of the research of evaporite in China[J]. Acta Sedimentologica Sinica,1992,10(3):78-84.]
    [14]叶传永,王志明,赵世勤,等.柴达木盆地西部尕斯库勒盐湖280 ka以来沉积特征[J].沉积学报,2014,32(1):85-92.[Ye Chuanyong,Wang Zhiming,Zhao Shiqin,et al. Sedimentary characteristics since 280 ka B.P. in Gasikule salt lake in western Qaidam Basin[J]. Acta Sedimentologica Sinica,2014,32(1):85-92.]
    [15]叶传永,王志明,郝伟林,等.青海西部尕斯库勒盐湖沉积物中铀和钍地球化学特征探讨[J].矿床地质,2014,33(5):1081-1090.[Ye Chuanyong,Wang Zhiming,Hao Weilin,et al. Geochemical characteristics of uranium and thorium in sediments from Gasikule salt lake in western Qinghai province[J]. Mineral Deposits,2014,33(5):1081-1090.]
    [16] Reading H G. Sedimentary environments:Processes,facies and stratigraphy[M]. 3rd ed. Oxford:Blackwell Publishing,1996:287-288,284.
    [17] Neev D,Emery K O. The dead sea:Depositional processes and environments of evaporites[M]. Jerusalem:State of Israel,Ministry of Development,Geological Survey,1967:147.
    [18] Strakhov N M. Principles of lithogenesis:Volume 3[M]. New York:Springer,1970:210-211.
    [19] Richter-Bernburg G. Geology of saline deposits[M]. Paris:UNESCO,1972:41-51.
    [20] Schmalz R F. Deep-water evaporite deposition:A genetic model[J]. AAPG Bulletin,1969,53(4):798-823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700