用户名: 密码: 验证码:
可恢复功能防震结构研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:State-of-the-art of earthquake resilient structures
  • 作者:吕西林 ; 武大洋 ; 周颖
  • 英文作者:LU Xilin;WU Dayang;ZHOU Ying;State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University;
  • 关键词:可恢复功能防震结构 ; 摇摆结构 ; 自复位结构 ; 可更换构件/部件 ; 可恢复功能防震评估
  • 英文关键词:earthquake resilient structure;;rocking structure;;self-centering structure;;replaceable member/component;;earthquake resilience evaluation
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:同济大学土木工程防灾国家重点实验室;
  • 出版日期:2018-12-05 16:42
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金重点项目(51638012);; 国家重点研发计划(2016YFC0701100)
  • 语种:中文;
  • 页:JZJB201902001
  • 页数:15
  • CN:02
  • ISSN:11-1931/TU
  • 分类号:5-19
摘要
对于可恢复功能防震理念,要求结构在保护生命的前提下,能够在震后快速恢复使用功能,尽量减少对正常生活和生产的影响。依据该理念,作为可恢复功能城市的基本组成部分,可恢复功能防震结构合理应用摇摆、自复位、可更换和耗能等四种机制,将损伤集中于可更换的耗能构件或部件,从而保护主体结构,使其无损伤或可快速修复。因此,结构功能可在震后及时恢复。利用这些机制,可恢复功能防震结构在材料、构件和体系三个层次具有不同的实现方案,包括摇摆结构、自复位结构、可更换构件/部件结构和复合自复位结构。基于可恢复功能的设计和评估方法,采用恢复时间、经济损失等更加直接的指标,为这一新型结构体系的应用奠定基础。目前,应提出更多的可恢复功能防震结构新体系,而进一步研究该类结构的关键构造和动力特性,提出切实可行的设计方法并形成统一的设计规范,应成为进一步研究的重点。
        The philosophy of earthquake resilience requires that the structure should quickly restore its function after earthquakes under the premise of protecting life safety, and should minimize the impact on normal life and production. According to this philosophy, as a fundamental part of earthquake resilient city, earthquake resilient structures concentrate the damage on replaceable members or components by applying the four mechanisms of rocking, self-centering, replace ability and energy dissipation, so as to make the primary structures free of damage or quickly repaired. Therefore, their functions can be timely restored. Various implementations of earthquake resilient structures, including rocking structures, self-centering structures, structures with replaceable members or components, and self-centering dual systems, are developed at the material-, member-, and system-levels with these four mechanisms. Using more direct and understandable indexes such as the recovery time and economic loss, resilience-based design and evaluation methods will lay a foundation for the application of this new structural system. At present, more new earthquake resilient structures should be put forward. Further study on the key structural detailing and dynamic characteristics of such structures, feasible design methods and the formation of a unified design code should be the focus of the next step.
引文
[1] SPUR. The dilemma of existing buildings: private property, public risk[R]. San Francisco, CA: the San Francisco Bay Area Planning and Urban Research Association, 2009.
    [2] COMERIO M, ELWOOD K, BERKOWITZ R, et al. The M6.3 Christchurch, New Zealand, earthquake of February 22, 2011[R]. Oakland: Earthquake Engineering Research Institute (EERI), 2011.
    [3] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念: 可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941-948.(LU Xilin,CHEN Yun, MAO Yuanjun. New connept of structural seismic design: earthquake resilient structures[J]. Journal of Tongji University (Natural Science),2011, 39(7): 941-948. (in Chinese))
    [4] SPUR. The resilient city: defining what San Francisco needs from its seismic mitigation policies[R]. San Francisco, CA: the San Francisco Planning and Urban Research Association, 2009.
    [5] MIELER M W, STOJADINOVIC B, BUDNITZ R J, et al. Toward resilient communities: a performance-based engineering framework for design and evaluation of the built environment[R]. Berkeley: Pacific Earthquake Engineering Research Center, University of California at Berkeley, 2013.
    [6] NIST. Community resilience planning guide for buildings and infrastructure systems: volume Ⅰ: NIST special publication 1190-1[R]. Washington DC: National Institute of Standards and Technology, 2015.
    [7] NIST. Community resilience planning guide for buildings and infrastructure systems: volume Ⅱ: NIST special publication 1190-2[R]. Washington DC: National Institute of Standards and Technology, 2015.
    [8] CIMELLARO G P, RENSCHLER C, REINHORN A M, ARENDT L. Peoples: a framework for evaluating resilience[J]. Journal of Structural Engineering, 2016, 142(10): 04016063.
    [9] FEMAP-58. Seismic performance assessment of buildings volume Ⅰ: methodology: FEMA P-58-1[R]. Washington DC: the Applied Technology Council for the Federal Emergency Management Agency, 2012.
    [10] ARUP. REDi rating system: resilience-based earthquake design initiative for the next generation of buildings[R]. London: ARUP Co., 2013.
    [11] MAYES R, REIS E. The U.S. Resiliency Council (USRC) and the building rating system[C]//Proceedings of the 2nd Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. San Francisco, California: the Applied Technology Council and the Structural Engineering Institute of the American Society of Civil Engineers, 2015: 754-764.
    [12] 吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4): 130-139.(LU Xilin, ZHOU Ying, CHEN Cong.Research progress on innovative earthquake-resilient structural systems[J]. Earthquake Engineering and Enginrring Dynamics,2014, 34(4): 130-139. (in Chinese))
    [13] CIMELLARO G P, REINHORN A M, BRUNEAU M. Seismic resilience of a hospital system[J]. Structure and Infrastructure Engineering, 2010, 6(1/2): 127-144.
    [14] CIMELLARO G P. Urban resilience for emergency response and recovery[M]. New York: Springer International Publishing, 2016.
    [15] Federal Emergency Management Agency. Pre-standard and commentary for the seismic rehabilitation of buildings:FEMA 356[S]. Washington DC: Federal Emergency Management Agency, 2000.
    [16] BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752.
    [17] CHANCELLOR N, EATHERTON M, ROKE D, et al. Self-centering seismic lateral force resisting systems: high performance structures for the city of tomorrow[J]. Buildings, 2014, 4(3): 520-548.
    [18] LEINENBACH C, KRAMER H, BERNHARD C, EIFLER D. Thermo-mechanical properties of an Fe-Mn-Si-Cr-Ni-Vc shape memory alloy with low transformation temperature[J]. Advanced Engineering Materials, 2012, 14(1/2): 62- 67.
    [19] CLADERA A, OLLER E, RIBAS C. Pilot experiences in the application of shape memory alloys in structural concrete[J]. Journal of Materials in Civil Engineering, 2014, 26(11): 04014084.
    [20] ALAM M S, NEHDI M, YOUSSEF M A. Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys[J]. Smart Structures and Systems, 2009, 5(5): 565-585.
    [21] SHRESTHA K C, ARAKI Y, NAGAE T, et al. Feasibility of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams[J]. Smart Materials and Structures, 2013, 22(2): 025025.
    [22] MORADI S, ALAM M S. Feasibility study of utilizing superelastic shape memory alloy plates in steel beam-column connections for improved seismic performance[J]. Journal of Intelligent Material Systems and Structures, 2014, 26(4): 463- 475.
    [23] XU X, ZHANG Y, LUO Y. Self-centering modularized link beams with post-tensioned shape memory alloy rods[J]. Engineering Structures, 2016, 112: 47-59.
    [24] 毛晨曦, 王大磊, 王涛, 李惠. 安装SMA阻尼器的钢筋混凝土连梁拟静力试验[J]. 地震工程与工程振动, 2014, 34(4): 140-147.(MAO Chenxi, WANG Dalei, WANG Tao, LI Hui. Pseudo-static tests of reinforced concrete coupling beams equipped with SMA dampers[J]. Earthquake Engineering and Enginrring Dynamics,2014, 34(4): 140-147. (in Chinese))
    [25] ZAFAR A, ANDRAWES B. Seismic behavior of SMA-FRP reinforced concrete frames under sequential seismic hazard[J]. Engineering Structures, 2015, 98: 163-173.
    [26] JALAEEFAR A, ASGARIAN B. Experimental investigation of mechanical properties of Nitinol structural steel and their hybrid component[J]. Journal of Materials in Civil Engineering, 2013, 25(10): 1498-1505.
    [27] OZBULUT O E, MICHAEL R J, SILWAL B. Seismic performance assessment of steel frames upgraded with self-centering viscous dampers[C]//Proceedings of the 33rd IMAC: A Conference and Exposition on Structural Dynamics, Dynamics of Civil Structures.Orlando, Florida: the Society for Experimental Mechanics, 2015: 421- 432.
    [28] RAFIQUL HAQUE A B M, SHAHRIA ALAM M. Cyclic performance of a piston based self-centering bracing system[C]//Proceedings of Structures Congress 2015. Reston, VA: ASCE, 2015: 2360-2371.
    [29] SOUL H, YAWNY A. Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires[J]. Smart Materials and Structures, 2015, 24(7): 075005.
    [30] LIN Y, SAUSE R, RICLES J. Seismic performance of steel self-centering, moment-resisting frame: hybrid simulations under design basis earthquake[J]. Journal of Structural Engineering, 2013, 139(11): 1823-1832.
    [31] PEKCAN G, ITANI A M, LINKE C. Enhancing seismic resilience using truss girder frame systems with supplemental devices[J]. Journal of Constructional Steel Research, 2014, 94: 23-32.
    [32] 吕西林, 崔晔, 刘兢兢. 自复位钢筋混凝土框架结构振动台试验研究[J]. 建筑结构学报, 2014, 35(1): 19-26.(LU Xilin, CUI Ye, LIU Jingjing. Shaking table test of a self-centering reinforced concrete frame[J]. Journal of Building Structures,2014, 35(1): 19-26. (in Chinese))
    [33] RODGERS G, MANDER J, CHASE J, DHAKAL R. Beyond ductility: parametric testing of a jointed rocking beam-column connection designed for damage avoidance[J]. Journal of Structural Engineering, 2015, 142(8): C4015006.
    [34] 蔡小宁, 孟少平, 孙巍巍. 自复位预制框架边节点组件受力性能试验研究[J]. 工程力学, 2014, 31(3): 160-167.(CAI Xiaoning, MENG Shaoping, SUN Weiwei. Experimental study on performance of components of the exterior self-centering post-tensioned precast conections[J]. Engineeing Mechanics,2014, 31(3): 160-167. (in Chinese))
    [35] DARLING S C. Seismic response of short period structures and the development of a self-centering truss moment frame with energy-dissipating elements for improved performance[D]. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 2012.
    [36] 滕军, 马伯涛, 李卫华, 等. 联肢剪力墙连梁阻尼器伪静力试验研究[J]. 建筑结构学报, 2010, 31(12): 92-100.(TENG Jun, MA Botao, LI Weihua, et al. Pseudo-static test for coupling beam damper of coupled shear wall structure[J]. Journal of Building Structures,2010, 31(12): 92-100. (in Chinese))
    [37] CHRISTOPOULOS C, MONTGOMERY M. Viscoelastic coupling dampers (VCDS) for enhanced wind and seismic performance of high-rise buildings[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(15): 2217-2233.
    [38] 纪晓东, 王彦栋, 马琦峰, 钱稼茹. 可更换钢连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 1-10.(JI Xiaodong, WANG Yandong, MA Qifeng, QIAN Jiaru.Experimental study on seismic behavior of replaceable steel coupling beams[J]. Journal of Building Structures,2015, 36(10): 1-10. (in Chinese))
    [39] 孔子昂, 王涛, 施唯, 潘鹏. 采用消能连梁的高层结构整体分析与试验研究[J]. 地震工程与工程振动, 2016, 36(4): 9-18.(KONG Zi’ang, WANG Tao, SHI Wei, PAN Peng.Analytical and experimental study on high-rise buildings with energy-dissipative coupling beams[J]. Earthquake Engineering and Enginrring Dynamics,2016, 36(4): 9-18. (in Chinese))
    [40] 吕西林, 陈云, 蒋欢军. 带可更换连梁的双肢剪力墙抗震性能试验研究[J]. 同济大学学报(自然科学版), 2014, 42(2): 175-182.(LU Xilin,CHEN Yun, JIANG Huanjun. Experimental study of seismic performance of coupled shear wall structure with replaceable coupling beams[J]. Journal of Tongji University (Natural Science),2014, 42(2): 175-182. (in Chinese))
    [41] CLOUGH R W, HUCKELBRIDGE A A. Preliminary experimental study of seismic uplift of a steel frame[R]. Berkeley, California: Earthquake Engineering Research Center, University of California at Berkeley, 1977.
    [42] POLLINO M. Seismic design for enhanced building performance using rocking steel braced frames[J]. Engineering Structures, 2015, 83: 129-139.
    [43] LU X L, CUI Y, LIU J J, GAO W J. Shaking table test and numerical simulation of a 1/2-scale self-centering reinforced concrete frame[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(12): 1899-1917.
    [44] SONG L L, GUO T, GU Y, CAO Z L. Experimental study of a self-centering prestressed concrete frame subassembly[J]. Engineering Structures, 2015, 88: 176-188.
    [45] DOWDEN D M, CLAYTON P M, LI C-H, et al. Full-scale pseudodynamic testing of self-centering steel plate shear walls[J]. Journal of Structural Engineering, 2015, 142(1): 04015100.
    [46] 吴浩, 吕西林, 蒋欢军, 等. 预应力预制混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2016, 37(5): 208-217.(WU Hao, LU Xilin, JIANG Huanjun, et al. Experimental study on seismic performance of prestressed precast concrete shear walls[J]. Journal of Building Structures,2016, 37(5): 208-217. (in Chinese))
    [47] LU X, DANG X, QIAN J, et al. Experimental study of self-centering shear walls with horizontal bottom slits[J]. Journal of Structural Engineering, 2017,143(3): 04016183.
    [48] KHANMOHAMMADI M, HEYDARI S. Seismic behavior improvement of reinforced concrete shear wall buildings using multiple rocking systems[J]. Engineering Structures, 2015, 100: 577-589.
    [49] 刘璐, 吴斌, 李伟, 赵俊贤. 一种新型自复位防屈曲支撑的拟静力试验[J]. 东南大学学报(自然科学版), 2012, 42(3): 536-541.(LIU Lu, WU Bin, LI Wei, ZHAO Junxian. Cyclic tests of novel self-centering buckling-restrained brace[J]. Journal of Southeast University (Natural Science),2012, 42(3): 536-541. (in Chinese))
    [50] ZHOU Z, XIE Q, LEI X C, et al. Experimental investigation of the hysteretic performance of dual-tube self-centering buckling-restrained braces with composite tendons[J]. Journal of Composites for Construction, 2015, 19(6): 04015011.
    [51] 徐龙河, 樊晓伟, 代长顺, 李忠献. 预压弹簧自恢复耗能支撑受力性能分析与试验研究[J]. 建筑结构学报, 2016, 37(9): 142-148.(XU Longhe, FAN Xiaowei, DAI Changshun, LI Zhongxian.Mechanical behavior analysis and experimental study on pre-stressed spring self-centering energy dissipation brace[J]. Journal of Building Structures,2016, 37(9): 142-148. (in Chinese))
    [52] KIGGINS S, UANG C M. Reducing residual drift of buckling-restrained braced frames as a dual system[J]. Engineering Structures, 2006, 28(11): 1525-1532.
    [53] PETTINGA D, CHRISTOPOULOS C, PAMPANIN S, PRIESTLEY N. Effectiveness of simple approaches in mitigating residual deformations in buildings[J]. Earthquake Engineering and Structural Dynamics, 2007, 36(12): 1763-1783.
    [54] EATHERTON M R, MA X, KRAWINKLER H, et al. Quasi-static cyclic behavior of controlled rocking steel frames[J]. Journal of Structural Engineering, 2014, 140(11): 04014083.
    [55] 曲哲, 和田章, 叶列平. 摇摆墙在框架结构抗震加固中的应用[J]. 建筑结构学报, 2011, 32(9): 11-19.(QU Zhe, WADA Akira, YE Lieping.Seismic retrofit of frame structures using rocking wall system[J]. Journal of Building Structures,2011, 32(9): 11-19. (in Chinese))
    [56] 吴守君, 潘鹏, 张鑫. 框架-摇摆墙结构受力特点分析及其在抗震加固中的应用[J]. 工程力学, 2016, 33(6): 54- 60.(WU Shoujun, PAN Peng, ZHANG Xin. Characteristics of frame rocking wall structure and its application in aseismic retrofit[J]. Engineeing Mechanics,2016, 33(6): 54- 60.(in Chinese))
    [57] QU B, SANCHEZ-ZAMORA F, POLLINO M. Mitigation of inter-story drift concentration in multi-story steel concentrically braced frames through implementation of rocking cores[J]. Engineering Structures, 2014, 70: 208-217.
    [58] BLEBO F C, ROKE D A. Seismic-resistant self-centering rocking core system[J]. Engineering Structures, 2015, 101: 193-204.
    [59] WU S, PAN P, NIE X, WANG H, SHEN S. Experimental investigation on reparability of an infilled rocking wall frame structure[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(15): 1-16.
    [60] DYANATI M, HUANG Q, ROKE D. Seismic demand models and performance evaluation of self-centering and conventional concentrically braced frames[J]. Engineering Structures, 2015, 84: 368-381.
    [61] CLAYTON P M, BERMAN J W, LOWES L N. Subassembly testing and modeling of self-centering steel plate shear walls[J]. Engineering Structures, 2013, 56: 1848-1857.
    [62] CUI Y, LU X, JIANG C. Experimental investigation of tri-axial self-centering reinforced concrete frame structures through shaking table tests[J]. Engineering Structures, 2017, 132: 684- 694.
    [63] 鲁亮, 李鸿, 刘霞, 吕西林. 梁端铰型受控摇摆式钢筋混凝土框架抗震性能振动台试验研究[J]. 建筑结构学报, 2016, 37(3): 59- 66.(LU Liang, LI Hong, LIU Xia, LU Xilin.Shaking table test on seismic perforamnce of controlled rocking reinforced concrete frame[J]. Journal of Building Structures,2016, 37(3): 59- 66. (in Chinese))
    [64] HEIDARI A, GHAREHBAGHI S. Seismic performance improvement of special truss moment frames using damage and energy concepts[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(7): 1055-1073.
    [65] 吕西林, 陈聪. 带有可更换构件的结构体系研究进展[J]. 地震工程与工程振动, 2014, 34(1): 27-36.(LU Xilin, CHEN Cong.Research progress in structural systems with replaceable members[J]. Earthquake Engineering and Enginrring Dynamics,2014, 34(1): 27-36. (in Chinese))
    [66] 吕西林, 陈聪. 设置可更换连梁的双筒体混凝土结构振动台试验研究[J]. 建筑结构学报, 2017, 38(8): 45-54.(LU Xilin, CHEN Cong. Shaking table tests on double tube concrete structure with replaceable coupling beams[J]. Journal of Building Structures,2017, 38(8): 45-54. (in Chinese))
    [67] 毛苑君, 吕西林. 带可更换墙脚构件剪力墙的低周反复加载试验[J]. 中南大学学报(自然科学版), 2014, 45(6): 2029-2040.(MAO Yuanjun, LU Xilin. Quasi-static tests of RC shear wall with replaceable foot parts[J]. Journal of Central South University (Science and Technology),2014, 45(6): 2029-2040. (in Chinese))
    [68] 刘其舟, 蒋欢军. 新型可更换墙脚部件剪力墙设计方法及分析[J]. 同济大学学报(自然科学版), 2016, 44(1): 37- 44.(LIU Qizhou, JIANG Huanjun. Design method of new type of reinforced concrete shear wall with replaceable corner components and its analysis[J]. Journal of Tongji University (Natural Science),2016, 44(1): 37- 44. (in Chinese))
    [69] CHRISTOPOULOS C, EROCHKO J. Self-centering energy-dissipative (SCED) brace: overview of recent developments and potential applications for tall buildings[C]//Proceedings of International Conference on Sustainable Development of Critical Infrastructure.Shanghai, China: the International Cooperation & Exchange Committee of the China Civil Engineering Society (CCES) and the Council on Disaster Risk Management of ASCE, 2014: 488- 495.
    [70] 曲哲, 叶列平. 摇摆墙-框架体系的抗震损伤机制控制研究[J]. 地震工程与工程振动, 2011, 31(4): 40-50.(QU Zhe, YE Lieping.Seismic damage mechanism control of rocking wall-frame system[J]. Earthquake Engineering and Enginrring Dynamics,2011, 31(4): 40-50. (in Chinese))
    [71] 杜永峰, 武大洋. 基于刚度需求设计的轻型消能摇摆架减震性态分析[J]. 土木工程学报, 2014, 47(1): 24-35.(DU Yongfeng, WU Dayang.Perforamnce analysis of light energy dissipative rocking frame designed on the basis of stiffness deamnd[J].China Civil Engineering Journal,2014, 47(1): 24-35. (in Chinese))
    [72] TERáN-GILMORE A, RUIZ-GARCíA J, BOJóRQUEZ-MORA E. Flexible frames as self-centering mechanism for buildings having buckling-restrained braces[J]. Journal of Earthquake Engineering, 2015, 19(6): 978-990.
    [73] TAKEUCHI T, CHEN X, MATSUI R. Seismic performance of controlled spine frames with energy-dissipating members[J]. Journal of Constructional Steel Research, 2015, 114: 51- 65.
    [74] 武大洋, 吕西林. 复合自复位结构基于概率的性能评估[J]. 建筑结构学报, 2017, 38(8): 14-24.(WU Dayang, LU Xilin.Probabilistic perforamnce assessment of self-centering dual systems[J]. Journal of Building Structures,2017, 38(8): 14-24. (in Chinese))
    [75] CIMELLARO G P, FUMO C, REINHORN A M, BRUNEAU M. Quantification of disaster resilience of health care facilities: technical report MCEER- 09- 0009[R]. Buffalo: Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo, 2009.
    [76] CIMELLARO G P, REINHORN A M, BRUNEAU M. Framework for analytical quantification of disaster resilience[J]. Engineering Structures, 2010, 32(11): 3639-3649.
    [77] TIRCA L, SERBAN O, LIN L, et al. Improving the seismic resilience of existing braced-frame office buildings[J]. Journal of Structural Engineering, 2015, 142(8): C4015003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700