用户名: 密码: 验证码:
Detoxification of ferrocyanide in a soil–plant system
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detoxification of ferrocyanide in a soil–plant system
  • 作者:Tsvetelina ; Dimitrova ; Frank ; Repmann ; Dirk ; Freese
  • 英文作者:Tsvetelina Dimitrova;Frank Repmann;Dirk Freese;Brandenburg University of Technology Cottbus-Senftenberg;
  • 英文关键词:Iron cyanide;;Detoxification;;Exposure;;Phytoremediation
  • 中文刊名:HJKB
  • 英文刊名:环境科学学报(英文版)
  • 机构:Brandenburg University of Technology Cottbus-Senftenberg;
  • 出版日期:2018-12-26
  • 出版单位:Journal of Environmental Sciences
  • 年:2019
  • 期:v.77
  • 基金:financed by the project of the German Railways(Deutsche Bahn AG) “Stabilisation of the former manufactured gas plant site “ehemalige Leuchtgasanstalt” in Cottbus through means of bioremediation”
  • 语种:英文;
  • 页:HJKB201903006
  • 页数:11
  • CN:03
  • ISSN:11-2629/X
  • 分类号:57-67
摘要
The detoxification of iron cyanide in a soil–plant system was investigated to assess the total cyanide extracted from contaminated soil and allocated in the leaf tissue of willow trees(Salix caprea). They were grown in soil containing up to 1000 mg/kg dry weight(dw) of cyanide(CN),added as ~(15)N-labeled potassium ferrocyanide and prepared with a new method for synthesis of labeled iron cyanides. CN content and ~(15)N enrichment were monitored weekly over the exposure in leaf tissue of different age. The ~(15)N enrichment in the young and old leaf tissue reached up to 15.197‰ and 9063‰, respectively; it increased significantly over the exposure and with increasing exposure concentrations(p < 0.05). Although the CN accumulation in the old leaf tissue was higher, compared to the young leaf tissue(p < 0.05), the ~(15)N enrichment in the two tissue types did not differ statistically. This indicates a non-uniform CN accumulation but a uniform ~(15)N allocation throughout the leaf mass. Significant differences were detected between the measured CN content and the C~(15)N content, calculated from the ~(15)N enrichment(p < 0.05), revealing a significant CN fraction within the leaf tissue, which could not be detected as ionic CN. The application of labeled iron CN clearly shows that CN is detoxified during uptake by the willows. However, these results do not exclude other detoxification pathways, not related to the trees. Still, they are strongly indicative of the central role the trees played in CN removal and detoxification under the experimental conditions.
        The detoxification of iron cyanide in a soil–plant system was investigated to assess the total cyanide extracted from contaminated soil and allocated in the leaf tissue of willow trees(Salix caprea). They were grown in soil containing up to 1000 mg/kg dry weight(dw) of cyanide(CN),added as ~(15)N-labeled potassium ferrocyanide and prepared with a new method for synthesis of labeled iron cyanides. CN content and ~(15)N enrichment were monitored weekly over the exposure in leaf tissue of different age. The ~(15)N enrichment in the young and old leaf tissue reached up to 15.197‰ and 9063‰, respectively; it increased significantly over the exposure and with increasing exposure concentrations(p < 0.05). Although the CN accumulation in the old leaf tissue was higher, compared to the young leaf tissue(p < 0.05), the ~(15)N enrichment in the two tissue types did not differ statistically. This indicates a non-uniform CN accumulation but a uniform ~(15)N allocation throughout the leaf mass. Significant differences were detected between the measured CN content and the C~(15)N content, calculated from the ~(15)N enrichment(p < 0.05), revealing a significant CN fraction within the leaf tissue, which could not be detected as ionic CN. The application of labeled iron CN clearly shows that CN is detoxified during uptake by the willows. However, these results do not exclude other detoxification pathways, not related to the trees. Still, they are strongly indicative of the central role the trees played in CN removal and detoxification under the experimental conditions.
引文
Andrews,S.,Anderson,A.,Rodrigues-Quinones,F.,2003.Bacterial iron homeostasis.FEMS Microbiol.Rev.27,215-237.
    Aronstein,B.,Maka,A.,Srivastava,V.,1994.Chemical and biological removal of cyanides from aqueous and soilcontaining systems.Appl.Microbiol.Biotechnol.41,700-707.
    Asperger,S.,Murati,I.,Pavlovic,D.,1969.Kinetics of oxidation and catalytic decomposition of hexacyanoferrate(II)ion.J.Chem.Soc.A 0,2044-2047.
    Barclay,M.,Hart,A.,Knowles,C.,Meeussen,J.C.,Tetdl,V.,1998.Biodegradation of metal cyanides by mixed and pure cultures of fungi.Enzyme Microb.Technol.22,223-231.
    Barclay,M.,Tett,V.,Knowles,C.,1998.Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions.Enzyme Microb.Technol.23,321-330.
    Beavis,A.,Vercesi,A.,1992.Anion uniport in plant mitochondria is mediated by a Mg2+-insensitive inner membrane anion channel.J.Biol.Chem.267,3079-3087.
    Bienfait,H.,1985.Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake.J.Bioenerg.Biomembr.17(2),73-83.
    Boucabeille,C.,Bories,A.,Ollivier,P.,Michel,G.,1994.Microbial degradation of metal complexed cyanides and thiocyanate from mining wastewaters.Environ.Pollut.84,59-67.
    Brown,J.,1978.Mechanism of iron uptake by plants.Plant Cell Environ.1,249-257.
    Bushey,J.,Ebbs,S.,Dzombak,D.,2006.Development of a plant uptake model for cyanide.Int.J.Phytoremediation 8,25-43.
    Bushey,J.,Small,M.,Dzombak,D.,Ebbs,S.,2006.Parameter estimation of a plant uptake model for cyanide:application to hydroponic data.Int.J.Phytoremediation 8,45-62.
    Davis,R.,Nahrstedt,A.,1985.Cyanogenesis in insects.(Chapter15).In:Kerkut,G.A.,Gilbert,L.I.(Eds.),Comprehensive insect physiology,biochemistry and pharmacology vol II.Pergamon Press,Oxford,p.635.
    Dimitrova,T.,Repmann,F.,Freese,D.,2017.Preparation of15Nlabelled ferrocyanide for tracer studies.Environ.Pollut.6(2),41-47.
    Dimitrova,T.,Repmann,F.,Raab,T.,Freese,D.,2015.Uptake of ferrocyanide in willow and poplar trees in a long term greenhouse experiment.Ecotoxicology 24(3),497-510.
    DIN EN ISO 14 403,2002.Quantification of Total and Free Cyanide with Continuous Flow Analysis.
    Dubey,S.,Holmes,D.,1995.Biological cyanide destruction mediated by microorganisms.World J.Microbiol.Biotechnol.11,257-265.
    Dursun,A.,Cal?k,A.,Aksu,Z.,1999.Degradation of ferrous(II)cyanide complex ions by Pseudomonas fluorescens.Process Biochem.34,901-908.
    Dzombak,D.,Ghosh,R.,Young,T.,2006.Physical-chemical properties and reactivity of cyanide.In:Dzombak,D.,Ghosh,R.,Wong-Chong,G.(Eds.),Cyanide in Water and Soil.Chemistry,Risk and Management.CRC Press,Taylor&Francis Group,Boca Raton,Florida,pp.55-87.
    Ebbs,S.,2004.Biological degradation of cyanide compounds.Curr.Opin.Biotechnol.15,231-236.
    Ebbs,S.,Bushey,J.,Bond,B.,Ghosh,R.,Dzombak,D.,2006.Cyanide phytoremediation.In:Dzombak,D.,Ghosh,R.,Wong-Chong,G.(Eds.),Cyanide in Water and Soil.Chemistry,Risk and Management.CRC Taylor&Francis Group,Boca Raton,Florida,pp.479-500.
    Ebbs,S.,Bushey,J.,Poston,S.,Kosma,D.,Samiotakis,M.,Dzombak,D.,2003.Transport and metabolism of free cyanide and iron cynaide complexes by willow.Plant Cell Environ.26,1467-1478.
    Ebbs,S.D.,Kosma,D.K.,Nielson,E.H.,Machingura,M.,Baker,A.J.,Woodrow,I.E.,2010.Nitrogen supply and cyanide concentration influence the enrichment of nitrogen from cyanide in wheat(Triticum aestivum L.)and sorghum(Sorghum bicolor L.).Plant Cell Environ.33,1152-1160.
    Ebbs,S.,Piccinin,R.,Goodger,J.,Kolev,S.,Woodrow,I.,Baker,A.,2008.Transport of ferrocyanide by two eucalypt species and sorghum.Int.J.Phytoremediation 10,343-357.
    Ebel,M.,Evangelou,M.,Schaeffer,A.,2007.Cyanide phytoremediation by water hyacinths(Eichhornia crassipes).Chemosphere 66(5),816-823.
    Federico,R.,Giartosio,C.,1983.A transplasmamembrane electron transport system in maize roots.Plant Physiol.182-184.
    Harris,R.,Knowles,C.,1983.Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen.J.Gen.Microbiol.129(4),1005-1011.
    Holleman,A.F.,Wiberg,N.,1995.Textbook of Inorganic Chemistry.Walter de Gruyter&Co,Berlin.
    Jones,J.B.,1998.Field sampling procedures for conducting a plant analysis.In:Kalra,Y.P.(Ed.),Handbook of Reference Methods for Plant Analysis.CRC Press,Taylor&Francis Group,Boca Raton,Forida,pp.31-32.
    Ju,H.,Bible,B.B.,Chong,K.,1983.Influence of ionic thiocyanate on growth of cabbage,bean and tobacco.J.Chem.Ecol.9(8),1255-1261.
    Knowles,C.J.,1976.Microorganisms and cyanide.Bacteriol.Rev.40,652-680.
    Kunz,D.,Nagappan,O.,Silva-Avalos,J.,Delong,G.,1992.Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764:Evidence for multiple pathways of metabolic conversion.Appl.Environ.Microbiol.58,2022-2029.
    Lachat QuickChem 10-204-00-1-X,2008.Digestion and Distillation of Total Cyanide in Drinking and Wastewaters.
    Larsen,M.,Trapp,S.,2006.Uptake of iron cyanide complexes into willow trees.Environ.Sci.Technol.40,1956-1961.
    Larsen,M.,Ucisik,A.,Trapp,S.,2005.Uptake,metabolism accumulation and toxicity of cyanide in willow trees.Environ.Sci.Technol.39,2135-2142.
    Lechtenberg,M.,Nahrstedt,A.,1999.Cyanogenic glucosides(chapter 5).In:Ikan,R.(Ed.),Naturally Occurring Glucosides.Wiley,Chichester,pp.147-191.
    Luque-Almagro,V.,Huertas,M.,Martínez-Luque,M.,MorenoVivián,C.,Roldán,M.,García-Gil,L.,et al.,2005.Bacterial degradation of cyanide and its metal complexes under alkaline conditions.Appl.Environ.Microbiol.71(2),940-947.
    Luque-Almagro,V.,Huertas,M.,Roldan,M.,Moreno-Vivian,C.,Martinez-Luque,M.,Blasco,R.,et al.,2007.The cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344 responds to cyanide by defence mechanisms against iron deprivation,oxidative damage and nitrogen stress.Environ.Microbiol.9(6),1541-1549.
    Meeussen,J.,Keizer,M.,van Riemsdijk,W.,de Haan,F.,1992.Dissolution behavior of iron cyanide(Prussian Blue)in contaminated soils.Environ.Sci.Technol.26,1832-1838.
    Michener,R.,Lajtha,K.,2007.Stable Isotopes in Ecology and Environmental Science.Blackwell Publishing Ltd.,Oxford.
    Miller,J.M.,Conn,E.E.,1980.Metabolism of hydrogen cyanide by higher plants.Plant Physiol.65,1199-1202.
    Mohr,H.,Schopfer,P.,1992.Pflanzen physiologie,4.Auflage.Springer Verlag,Berlin-Heidelberg.
    Mudder,T.,Botz,M.,Smith,A.,2001.Chemistry and Treatment of Cyanidation Wastes.2nd ed.Mining Journal Books,Ltd.,London.
    Peiser,G.D.,Wang,T.T.,Hoffmann,N.E.,Yang,S.F.,Liu,H.W.,Walsh,C.T.,1984.Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene.Proc.Natl.Acad.Sci.U.S.A.81,3059-3063.
    Samiotakis,M.,Ebbs,S.D.,2004.Possible evidence for transport of an iron cyanide complex by plants.Environ.Pollut.127(2),169-173.
    Shearer,G.,Kohl,D.H.,1993.Natural abundance of15N:Fractional contribution of two sources to a common sink and use of isotope discrimination.In:Knowles,R.,Paul,E.A.,Melillo,J.,Blackburn,H.(Eds.),Nitrogen Isotope Techniques.Academic,New York,pp.89-125.
    Shifrin,N.,Beck,B.D.,Gauthier,T.,Chapnick,S.,Goodman,G.,1996.Chemistry,toxicology and human health risk of cyanide compounds in soils at former manufactured gas plant sites.Regul.Toxicol.Pharmacol.23,106-116.
    Trapp,S.,Christiansen,H.,2003.Phytoremediation of cyanide polluted soils.In:McCutcheon,S.,Schnoor,J.E.(Eds.),Phytoremediation:Transformation and Control of Contaminants.John Wiley&Sons Inc.,Hoboken,pp.829-862.
    Trapp,S.,Koch,I.,Christiansen,H.,2001a.Uptake of cyanide in plants-risk or chance for phytoremediation?UWSF.-Z.Umweltchem.?kotox.13(1),20-28.
    Trapp,S.,Larsen,M.,Christiansen,H.,2001b.Experimental data on teh kinetics of the degradation of cyanide after uptake in plants.UWSF.-Z.Umweltchem.?kotox.13(1),29-37.
    Wong-Chong,G.M.,Ghosh,R.S.,Bushey,J.T.,Ebbs,S.D.,Neuhauser,E.F.,2006.Natural sources of cyanide.In:Dzombak,D.,Ghosh,R.,Wong-Chong,G.(Eds.),Cyanide in Water and Soil.Chemistry,Risk and Management.CRC Press Taylor&Francis Group,Boca Raton,Florida,pp.25-40.
    Yanase,H.,Sakamoto,A.,Okamoto,K.,Kita,K.,Sato,Y.,2000.Degradation of the metal-cyano complex tetracyanonickelate(II)by Fusarium oxysporum N-10.Appl.Microbiol.Biotechnol.53,328-334.
    Yip,S.,Yang,W.,1988.Ethylene biosynthesis in relation to ethylene production in plant tissues.Bot.Bull.Acad.Sin.Taipei 39,1-7.
    Yu,X.Z.,Gu,J.D.,2009.Uptake,accumulation and metabolic response of ferricyanide in weeping willows.J.Environ.Monit.11,145-152.
    Yu,X.,Gu,J.,Liu,S.,2007.Biotransformation and metabolic response of cyanide in weeping willows.J.Hazard.Mater.147,838-844.
    Yu,X.,Gu,J.,Luan Li,L.,2008.Assimilation and physiological effects of ferrocyanide on weeping willows.Ecotoxicol.Environ.Saf.71,609-615.
    Yu,X.,Li,F.,Li,K.,2011a.A possible new mechanism involved in ferro-cyanide metabolism by plants.Environ.Sci.Pollut.Res.18(8),1343-1350.
    Yu,X.Z.,Lu,P.C.,Yu,Z.,2012a.On the role of b-cyanoalanine synthase(CAS)in metabolism of free cyanide and ferricyanide by rice seedlings.Ecotoxicology 21,548-556.
    Yu,X.,Peng,X.,Wang,G.,2011b.Photo-induced dissociation of ferri-and ferro-cyanide in hydroponic solution.Int.J.Environ.Sci.Technol.8,853-862.
    Yu,X.Z.,Shen,P.P.,Gu,J.G.,Zhou,Y.,Zhang,F.Z.,2012b.Evidence of iron cyanides as supplementary nitrogen source to rice seedlings.Ecotoxicology 21,1642-1650.
    Yu,X.Z.,Zhang,F.Z.,2013.Effects of exogenous thiocyanate on mineral nutrients,antioxidative responses,and free amino acids in rice seedlings.Ecotoxicology 22,752-760.
    Yu,X.Z.,Zhang,X.H.,2016.Determination of the MichaelisMenten kinetics and the genes expression involved in phytodegradation of cyanide and ferricyanide.Ecotoxicology 25(5),888-899.
    Yu,X.Z.,Zhang,F.Z.,Li,F.,2012c.Phytotoxicity of thiocyanate to rice seedlings.Bull.Environ.Contam.Toxicol.88,703-706.
    Yu,X.,Zhou,P.,Yang,Y.,2006.The potential for phytoremediation of iron cyanide complex by willows.Ecotoxicology 15,461-467.
    Yu,X.,Zhou,P.,Zhou,X.,Liu,Y.,2005.Cyanide removal by Chinese vegetation.Quantification of the Michaelis-Menten kinetics.Environ.Sci.Pollut.Res.12(4),221-226.
    Zhang,F.,Yu,X.,Gu,J.,2013.Transport and assimilation of ferricyanide by three willow species.Water Air Soil Pollut.224,1522-1532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700